Unmanned aerial vehicle (UAV) systems are heavily adopted nowadays to collect high-resolution imagery with the purpose of documenting and mapping environment and cultural heritage. Such data are currently processed by programs based on the Structure from Motion (SfM) concept, coming from the computer vision community, rather than from classical photogrammetry. It is interesting to check whether some widely accepted rules coming from old-fashioned photogrammetry still holds: the relation between accuracy and ground sampling distance (GSD), the ratio between the vertical and horizontal accuracy, accuracy estimated on ground control points (GCPs) vs. that estimated with check points (CPs) also in relation to their ratio and distribution. To face the envisaged aspects, the paper adopts a comparative approach, as several programs are used and numerous configurations considered. The paper illustrates the dataset adopted, the carefully tuned processing strategies and bundle block adjustment (BBA) results in terms of accuracy for both GCPs and CPs. Finally, a leave-one-out (LOO) cross-validation strategy is proposed to assess the accuracy for one of the proposed configurations. Some of the reported results were previously presented in the 5th GISTAM Conference.

Accuracy assessment of a UAV block by different software packages, processing schemes and validation strategies

Casella V.;Franzini M.;
2020-01-01

Abstract

Unmanned aerial vehicle (UAV) systems are heavily adopted nowadays to collect high-resolution imagery with the purpose of documenting and mapping environment and cultural heritage. Such data are currently processed by programs based on the Structure from Motion (SfM) concept, coming from the computer vision community, rather than from classical photogrammetry. It is interesting to check whether some widely accepted rules coming from old-fashioned photogrammetry still holds: the relation between accuracy and ground sampling distance (GSD), the ratio between the vertical and horizontal accuracy, accuracy estimated on ground control points (GCPs) vs. that estimated with check points (CPs) also in relation to their ratio and distribution. To face the envisaged aspects, the paper adopts a comparative approach, as several programs are used and numerous configurations considered. The paper illustrates the dataset adopted, the carefully tuned processing strategies and bundle block adjustment (BBA) results in terms of accuracy for both GCPs and CPs. Finally, a leave-one-out (LOO) cross-validation strategy is proposed to assess the accuracy for one of the proposed configurations. Some of the reported results were previously presented in the 5th GISTAM Conference.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1416534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact