The growing spectrum crunch has motivated exploratory efforts in the use of LTE in the 5 GHz bands for downlink traffic. However, this paradigm raises concerns of fair sharing of the spectrum and the adverse impact of scheduled LTE frames on Wi-Fi Packet Success Rates (PSR). To address this issue, we propose E-Fi, an interference-evasion mechanism that allows Wi-Fi devices to survive LTE transmissions without any cooperation between these two different standards. Different from existing approaches, we argue that the simple use of Almost Blank Subframes (ABS) within the LTE standard offering short channel access windows overestimates opportunities for Wi-Fi. The pilots embedded in the ABS not only interfere with Wi-Fi but also adversely impact the carrier sensing function. E-Fi mitigates this problem through a two-fold approach. It uses a combination of (i) Wi-Fi Direct with packet relaying and (ii) classical distributed coordination function to reach distant nodes. Second, it ensures load balancing for both Wi-Fi uplink and downlink traffic with high PSR by creating node-groups based with dedicated contention-based medium access intervals. Our approach is validated by comprehensive simulation and experimental results that indicate significantly higher throughput in E-Fi compared to classical Wi-Fi.

E-Fi: Evasive Wi-Fi measures for surviving LTE within 5 GHz unlicensed band

Favalli L.;
2019-01-01

Abstract

The growing spectrum crunch has motivated exploratory efforts in the use of LTE in the 5 GHz bands for downlink traffic. However, this paradigm raises concerns of fair sharing of the spectrum and the adverse impact of scheduled LTE frames on Wi-Fi Packet Success Rates (PSR). To address this issue, we propose E-Fi, an interference-evasion mechanism that allows Wi-Fi devices to survive LTE transmissions without any cooperation between these two different standards. Different from existing approaches, we argue that the simple use of Almost Blank Subframes (ABS) within the LTE standard offering short channel access windows overestimates opportunities for Wi-Fi. The pilots embedded in the ABS not only interfere with Wi-Fi but also adversely impact the carrier sensing function. E-Fi mitigates this problem through a two-fold approach. It uses a combination of (i) Wi-Fi Direct with packet relaying and (ii) classical distributed coordination function to reach distant nodes. Second, it ensures load balancing for both Wi-Fi uplink and downlink traffic with high PSR by creating node-groups based with dedicated contention-based medium access intervals. Our approach is validated by comprehensive simulation and experimental results that indicate significantly higher throughput in E-Fi compared to classical Wi-Fi.
File in questo prodotto:
File Dimensione Formato  
E-Fi-TMC.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1418296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact