Chemokines are a group of peptides of low molecular weight that induce the chemotaxis of different leukocyte subtypes. The major function of chemokines is the recruitment of leukocytes to inflammation sites, but they also play a role in tumoral growth, angiogenesis, and organ sclerosis. In the last few years, experimental evidence accumulated supporting the concept that interferon-gamma (IFN-gamma) inducible chemokines (CXCL9, CXCL10, and CXCL11) and their receptor, CXCR3, play an important role in the initial stage of autoimmune disorders involving endocrine glands. The fact that, after IFN-gamma stimulation, endocrine epithelial cells secrete CXCL10, which in turn recruits type 1 T helper lymphocytes expressing CXCR3 and secreting IFN-gamma, thus perpetuating autoimmune inflammation, strongly supports the concept that chemokines play an important role in endocrine autoimmunity. This article reviews the recent literature including basic science, animal models, and clinical studies, regarding the role of these chemokines in autoimmune endocrine diseases. The potential clinical applications of assaying the serum levels of CXCL10 and the value of such measurements are reviewed. Clinical studies addressing the issue of a role for serum CXCL10 measurement in Graves' disease, Graves' ophthalmopathy, chronic autoimmune thyroiditis, type 1 diabetes mellitus, and Addison's disease have been considered. The principal aim was to propose that chemokines, and in particular CXCL10, should no longer be considered as belonging exclusively to basic science, but rather should be used for providing new insights in the clinical management of patients with endocrine autoimmune diseases.

Role of chemokines in endocrine autoimmune diseases.

ROTONDI, MARIO;CHIOVATO, LUCA;
2007-01-01

Abstract

Chemokines are a group of peptides of low molecular weight that induce the chemotaxis of different leukocyte subtypes. The major function of chemokines is the recruitment of leukocytes to inflammation sites, but they also play a role in tumoral growth, angiogenesis, and organ sclerosis. In the last few years, experimental evidence accumulated supporting the concept that interferon-gamma (IFN-gamma) inducible chemokines (CXCL9, CXCL10, and CXCL11) and their receptor, CXCR3, play an important role in the initial stage of autoimmune disorders involving endocrine glands. The fact that, after IFN-gamma stimulation, endocrine epithelial cells secrete CXCL10, which in turn recruits type 1 T helper lymphocytes expressing CXCR3 and secreting IFN-gamma, thus perpetuating autoimmune inflammation, strongly supports the concept that chemokines play an important role in endocrine autoimmunity. This article reviews the recent literature including basic science, animal models, and clinical studies, regarding the role of these chemokines in autoimmune endocrine diseases. The potential clinical applications of assaying the serum levels of CXCL10 and the value of such measurements are reviewed. Clinical studies addressing the issue of a role for serum CXCL10 measurement in Graves' disease, Graves' ophthalmopathy, chronic autoimmune thyroiditis, type 1 diabetes mellitus, and Addison's disease have been considered. The principal aim was to propose that chemokines, and in particular CXCL10, should no longer be considered as belonging exclusively to basic science, but rather should be used for providing new insights in the clinical management of patients with endocrine autoimmune diseases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/141855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 214
  • ???jsp.display-item.citation.isi??? 203
social impact