In this paper, a phase-field approach for structural topology optimization for a 3D-printing process which includes stress constraints and potentially multiple materials or multiscales is analyzed. First-order necessary optimality conditions are rigorously derived and a numerical algorithm which implements the method is presented. A sensitivity study with respect to some parameters is conducted for a two-dimensional cantilever beam problem. Finally, a possible workflow to obtain a 3D-printed object from the numerical solutions is described and the final structure is printed using a fused deposition modeling (FDM) 3D printer.

A phase-field-based graded-material topology optimization with stress constraint

Auricchio F.;Carraturo M.;Reali A.;Rocca E.
2020-01-01

Abstract

In this paper, a phase-field approach for structural topology optimization for a 3D-printing process which includes stress constraints and potentially multiple materials or multiscales is analyzed. First-order necessary optimality conditions are rigorously derived and a numerical algorithm which implements the method is presented. A sensitivity study with respect to some parameters is conducted for a two-dimensional cantilever beam problem. Finally, a possible workflow to obtain a 3D-printed object from the numerical solutions is described and the final structure is printed using a fused deposition modeling (FDM) 3D printer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1423342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact