Methylmercury (MeHg) is one of the most significant public health hazards. The clinical findings in the victims of the Japanese and Iraqi outbreaks have disclosed the pronounced susceptibility of the developing brain to MeHg poisoning. This notion has triggered worldwide scientific attention toward the long-term consequences of prenatal exposure on child development in communities with chronic low level dietary exposure. MeHg neurodevelopmental effects have been extensively investigated in laboratory animals under well-controlled exposure conditions. This article provides an updated overview of the main neuromorphological and neurobehavioral changes reported in non-human primates and rodents following developmental exposure to MeHg. Different aspects of MeHg’s effects on the immature organism are reported, with particular reference to the delayed onset of symptoms and the persistency of central nervous system (CNS) injury/dysfunction. Particular attention is paid to the comparative toxicity assessment across species, and to the degree of concordance/discordance between human and animal data. The contribution of animal studies to define the role of potential effect modifiers and variables on MeHg dose–response relationships is also addressed. The ultimate goal is to discuss the relevance of laboratory animal results, as a complementary tool to human data, with regard to the human risk assessment process.

Developmental neurotoxicity of methylmercury. Laboratory animal data and their contribution to human risk assessment

RODA, ELISA;MANZO, LUIGI
2008-01-01

Abstract

Methylmercury (MeHg) is one of the most significant public health hazards. The clinical findings in the victims of the Japanese and Iraqi outbreaks have disclosed the pronounced susceptibility of the developing brain to MeHg poisoning. This notion has triggered worldwide scientific attention toward the long-term consequences of prenatal exposure on child development in communities with chronic low level dietary exposure. MeHg neurodevelopmental effects have been extensively investigated in laboratory animals under well-controlled exposure conditions. This article provides an updated overview of the main neuromorphological and neurobehavioral changes reported in non-human primates and rodents following developmental exposure to MeHg. Different aspects of MeHg’s effects on the immature organism are reported, with particular reference to the delayed onset of symptoms and the persistency of central nervous system (CNS) injury/dysfunction. Particular attention is paid to the comparative toxicity assessment across species, and to the degree of concordance/discordance between human and animal data. The contribution of animal studies to define the role of potential effect modifiers and variables on MeHg dose–response relationships is also addressed. The ultimate goal is to discuss the relevance of laboratory animal results, as a complementary tool to human data, with regard to the human risk assessment process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/142425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact