The formation of the hydroxyl free radical (HFR) can be quantified indirectly, by measuring two products of the hydroxylation of salicylic acid, 2,3-dihydroxybenzoate (2,3-DHB) and 2,5-dihydroxybenzoate (2,5-DHB). In this study, we used reversed-phase high-performance liquid chromatography with electrochemical (coulometric) detection to measure 2,3- and 2,5-DHB levels in human platelets. The limits of detection of the method were 10 and 5 fmol on column for 2,3-DHB and 2,5-DHB, respectively. We tested the technique by measuring increases in dihydroxybenzoate levels after exposure of platelets to experimentally induced oxidative stress. Then, we measured platelet levels of 2,3- and 2,5-DHB in patients with Parkinson's disease, under therapy with L-DOPA, and in normal subjects. We also measured platelet concentrations of L-DOPA and its major metabolite, 3-O-methyldopa (3-OMD). Parkinsonian patients showed increased levels of both 2,3- and 2,5-DHB. Platelet levels of 2,3-DHB were positively correlated with platelet levels of L-DOPA and 3-OMD. The technique we describe proved simple and extremely sensitive and may represent a useful tool for the study of oxidative stress in humans. Copyright (C) 1999.

Determination of hydroxyl free radical formation in human platelets using high-performance liquid chromatography with electrochemical detection

Blandini F.;Ricotti R.;Di Jeso F.;Nappi G.
1999-01-01

Abstract

The formation of the hydroxyl free radical (HFR) can be quantified indirectly, by measuring two products of the hydroxylation of salicylic acid, 2,3-dihydroxybenzoate (2,3-DHB) and 2,5-dihydroxybenzoate (2,5-DHB). In this study, we used reversed-phase high-performance liquid chromatography with electrochemical (coulometric) detection to measure 2,3- and 2,5-DHB levels in human platelets. The limits of detection of the method were 10 and 5 fmol on column for 2,3-DHB and 2,5-DHB, respectively. We tested the technique by measuring increases in dihydroxybenzoate levels after exposure of platelets to experimentally induced oxidative stress. Then, we measured platelet levels of 2,3- and 2,5-DHB in patients with Parkinson's disease, under therapy with L-DOPA, and in normal subjects. We also measured platelet concentrations of L-DOPA and its major metabolite, 3-O-methyldopa (3-OMD). Parkinsonian patients showed increased levels of both 2,3- and 2,5-DHB. Platelet levels of 2,3-DHB were positively correlated with platelet levels of L-DOPA and 3-OMD. The technique we describe proved simple and extremely sensitive and may represent a useful tool for the study of oxidative stress in humans. Copyright (C) 1999.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1424634
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact