In amyloid light chain (AL) amyloidosis, a small B-cell clone, most commonly a plasma cell clone, produces monoclonal light chains that exert organ toxicity and deposit in tissue in the form of amyloid fibrils. Organ involvement determines the clinical manifestations, but symptoms are usually recognized late. Patients with disease diagnosed at advanced stages, particularly when heart involvement is present, are at high risk of death within a few months. However, symptoms are always preceded by a detectable monoclonal gammopathy and by elevated biomarkers of organ involvement, and hematologists can screen subjects who have known monoclonal gammopathy for amyloid organ dysfunction and damage, allowing for a presymptomatic diagnosis. Discriminating patients with other forms of amyloidosis is difficult but necessary, and tissue typing with adequate technology available at referral centers, is mandatory to confirm AL amyloidosis. Treatment targets the underlying clone and should be risk adapted to rapidly administer the most effective therapy patients can safely tolerate. In approximately one-fifth of patients, autologous stem cell transplantation can be considered up front or after bortezomib-based conditioning. Bortezomib can improve the depth of response after transplantation and is the backbone of treatment of patients who are not eligible for transplantation. The daratumumab1bortezomib combination is emerging as a novel standard of care in AL amyloidosis. Treatment should be aimed at achieving early and profound hematologic response and organ response in the long term. Close monitoring of hematologic response is vital to shifting nonresponders to rescue treatments. Patients with relapsed/refractory disease are generally treated with immune-modulatory drugs, but daratumumab is also an effective option.
Management of AL amyloidosis in 2020
Palladini G.;Milani P.;Merlini G.
2020-01-01
Abstract
In amyloid light chain (AL) amyloidosis, a small B-cell clone, most commonly a plasma cell clone, produces monoclonal light chains that exert organ toxicity and deposit in tissue in the form of amyloid fibrils. Organ involvement determines the clinical manifestations, but symptoms are usually recognized late. Patients with disease diagnosed at advanced stages, particularly when heart involvement is present, are at high risk of death within a few months. However, symptoms are always preceded by a detectable monoclonal gammopathy and by elevated biomarkers of organ involvement, and hematologists can screen subjects who have known monoclonal gammopathy for amyloid organ dysfunction and damage, allowing for a presymptomatic diagnosis. Discriminating patients with other forms of amyloidosis is difficult but necessary, and tissue typing with adequate technology available at referral centers, is mandatory to confirm AL amyloidosis. Treatment targets the underlying clone and should be risk adapted to rapidly administer the most effective therapy patients can safely tolerate. In approximately one-fifth of patients, autologous stem cell transplantation can be considered up front or after bortezomib-based conditioning. Bortezomib can improve the depth of response after transplantation and is the backbone of treatment of patients who are not eligible for transplantation. The daratumumab1bortezomib combination is emerging as a novel standard of care in AL amyloidosis. Treatment should be aimed at achieving early and profound hematologic response and organ response in the long term. Close monitoring of hematologic response is vital to shifting nonresponders to rescue treatments. Patients with relapsed/refractory disease are generally treated with immune-modulatory drugs, but daratumumab is also an effective option.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.