Pathophysiological mechanisms underlying the syringomyelia associated with Chiari I malformation (CM-1) are still not completely understood, and reliable predictors of the outcome of posterior fossa decompression (PFD) are lacking accordingly. The reported prospective case-series study aimed to prove the existence of a pulsatile, biphasic systolic-diastolic cerebrospinal fluid (CSF) dynamics inside the syrinx associated with CM-1 and to assess its predictive value of patients' outcome after PFD. Insights into the syringogenesis are also reported.

Pulsatile cerebrospinal fluid dynamics in Chiari I malformation syringomyelia: Predictive value in posterior fossa decompression and insights into the syringogenesis

Luzzi, Sabino;Giotta Lucifero, Alice;Galzio, Renato;
2021-01-01

Abstract

Pathophysiological mechanisms underlying the syringomyelia associated with Chiari I malformation (CM-1) are still not completely understood, and reliable predictors of the outcome of posterior fossa decompression (PFD) are lacking accordingly. The reported prospective case-series study aimed to prove the existence of a pulsatile, biphasic systolic-diastolic cerebrospinal fluid (CSF) dynamics inside the syrinx associated with CM-1 and to assess its predictive value of patients' outcome after PFD. Insights into the syringogenesis are also reported.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1431915
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact