The shift towards more sustainable energy generation, transportation, and storage will be a major challenge in the next decades. Following the global trend, both academic and industrial communities are exploiting all the available tools to facilitate the transition. Machine learning is undoubtedly one such tool: substantial advancements in the last years enabled its application to several aspects of energy production and management. We selected two problems that can be addressed with machine learning. In collaboration with A2A, the third largest Italian utility, we studied the prediction of natural gas demand; with the Ecole Polytechnique Fédérale de Lausanne, we tackled the identification of the topology and the electrical parameters of distribution power networks. Both topics have deep practical implications. As nations are decommissioning coal and oil plants, natural gas becomes the ideal candidate to complement renewable yet intermittent power sources. Moreover, natural gas covers a relevant portion of the energy consumption of residential and industrial buildings. The accurate prediction of the demand can make both transportation and storage more efficient, reducing environmental and financial costs. As the electrification of transportation and domestic heating gains traction, power networks are put under heavy stress. Moreover, the bidirectional power flows created by distributed generation must be carefully managed. New paradigms, such as microgrids and smart grids, are set to replace the current infrastructure. Yet, the complex control algorithms required by such designs require complete knowledge of the network structure. We deal with the prediction of residential, industrial and thermoelectric gas demand at country level. We present a comprehensive explorative study, which lays the foundation for feature selection and engineering. We then cast a regression problem and compare several base models, highlighting the strengths and weaknesses of each one. For the first time, we propose to apply ensembling, showing how it yields more accurate predictors. Finally, we design a novel model for the influence of weather forecasting errors on the accuracy of residential gas demand predictors, and we demonstrate its effectiveness with experimental evidence. We propose to solve the identification of distribution networks by means of a novel procedure, complementing an online estimation algorithm with a sequential design of experiment. The approach has two main advantages with respect to traditional methods: it exploits controllable generators to maximize the information content of the samples, and it can seamlessly adapt to changes in topology, which are especially frequent in microgrids. The effectiveness of the proposed approach is substantiated by simulations on standard testbeds. With respect to both topics, throughout the thesis we highlight the concrete industrial applications of our work and provide directions for future developments.
La transizione verso un paradigma più sostenibile di generazione, trasporto e stoccaggio dell'energia sarà una delle sfide più critiche dei prossimi decenni. Seguendo le tendenze globali, sia l'accademia che l'industia stanno sfruttando tutti gli strumenti a loro disposizione per facilitare e accelerare tale processo. Il machine learning è uno di tali strumenti: negli ultimi anni, numerose e rilevanti innovazioni hanno portato ad un numero sempre crescente di applicazioni, che ormai comprendono ogni aspetto della produzione e del trasporto dell'energia. Abbiamo scelto di investigare due problemi che ben si prestano ad essere risolti con tecniche di machine learning: da un lato, in collaborazione con A2A, la terza utility italiana, abbiamo studiato la previsione della domanda nazionale di gas natuale; dall'altro, in collaborazione con l'Ecole Polytechnique Fédérale de Lausanne, abbiamo affrontato l'identificazione della topologia e dei parametri delle reti elettriche di distribuzione. Entrambi gli ambiti offrono immediate applicazioni. Diverse nazioni -- inclusa l'Italia -- pianificano di dismettere i generatori a carbone o olio combustibile: gli impianti a gas naturale diventano quindi gli ideali candidati a complementare fonti rinnovabili intermittenti. Inoltre, il gas naturale copre attualemente una larga porzione del fabbisogno primario dei complessi industriali e residenziali. Previsioni accurate della domanda costituiscono un elemento fondamentale nei processi delle utility e dei gestori di rete e promettono di rendere più efficiente il trasporto e lo stoccaggio, diminuendo così i costi finanziari e ambientali. L'identificazione delle reti elettriche, invece, è necessaria agli algoritmi di controllo della generazione distributa, a loro volta moduli fondamentali in strutture ad alta efficienza e basso impatto ambientale, come microgrid e smart grid. In questo lavoro, affrontiamo la previsione della domanda italiana di gas naturale ad uso residenziale, industriale e termoelettrico. La nostra discussione si apre con un'analisi esplorativa, tesa a guidare la scelta e la creazione delle variabili. Prosegue quindi con la trasformazione della previsione in un problema di regressione e la comparazione di diversi modelli base. Per la prima volta, applichiamo poi in questo ambito la tecnica dell'ensembling e dimostriamo come questa produca predittori più accurati e robusti. Infine, proponiamo un originale modello probabilistico per l'impatto dell'inaccuratezza delle previsioni meteo sull'errore nella previsione della domanda residenziale. Per quanto concerne l'identificazione delle reti elettriche di distribuzione, proponiamo una nuova procedura, che complementa un algoritmo di apprendimento online con la tecnica del design of experiment. Tale approccio ha due vantaggi rispetto ai metodi esistenti: sfrutta i generatori controllabili per massimizzare l'informazione contenuta nelle misure, senza tuttavia compromettere l'operatività o la sicurezza della rete, ed è capace di adattare la stima a cambiamenti di configurazione, molto comuni nelle microgrid. L'efficacia del metodo viene comprovata da numerose simulazioni numeriche. Infine, nel corso di tutta la tesi, sottolineamo le applicazioni concrete dei nostri contributi e forniamo indicazioni per possibili sviluppi futuri.
Machine Learning Approaches for Energy Distribution and Planning
FABBIANI, EMANUELE
2021-03-01
Abstract
The shift towards more sustainable energy generation, transportation, and storage will be a major challenge in the next decades. Following the global trend, both academic and industrial communities are exploiting all the available tools to facilitate the transition. Machine learning is undoubtedly one such tool: substantial advancements in the last years enabled its application to several aspects of energy production and management. We selected two problems that can be addressed with machine learning. In collaboration with A2A, the third largest Italian utility, we studied the prediction of natural gas demand; with the Ecole Polytechnique Fédérale de Lausanne, we tackled the identification of the topology and the electrical parameters of distribution power networks. Both topics have deep practical implications. As nations are decommissioning coal and oil plants, natural gas becomes the ideal candidate to complement renewable yet intermittent power sources. Moreover, natural gas covers a relevant portion of the energy consumption of residential and industrial buildings. The accurate prediction of the demand can make both transportation and storage more efficient, reducing environmental and financial costs. As the electrification of transportation and domestic heating gains traction, power networks are put under heavy stress. Moreover, the bidirectional power flows created by distributed generation must be carefully managed. New paradigms, such as microgrids and smart grids, are set to replace the current infrastructure. Yet, the complex control algorithms required by such designs require complete knowledge of the network structure. We deal with the prediction of residential, industrial and thermoelectric gas demand at country level. We present a comprehensive explorative study, which lays the foundation for feature selection and engineering. We then cast a regression problem and compare several base models, highlighting the strengths and weaknesses of each one. For the first time, we propose to apply ensembling, showing how it yields more accurate predictors. Finally, we design a novel model for the influence of weather forecasting errors on the accuracy of residential gas demand predictors, and we demonstrate its effectiveness with experimental evidence. We propose to solve the identification of distribution networks by means of a novel procedure, complementing an online estimation algorithm with a sequential design of experiment. The approach has two main advantages with respect to traditional methods: it exploits controllable generators to maximize the information content of the samples, and it can seamlessly adapt to changes in topology, which are especially frequent in microgrids. The effectiveness of the proposed approach is substantiated by simulations on standard testbeds. With respect to both topics, throughout the thesis we highlight the concrete industrial applications of our work and provide directions for future developments.File | Dimensione | Formato | |
---|---|---|---|
Fabbiani - Machine Learning Approaches for Energy Distribution and Planning.pdf
accesso aperto
Descrizione: Machine Learning Approaches for Energy Distribution and Planning
Tipologia:
Tesi di dottorato
Dimensione
6.42 MB
Formato
Adobe PDF
|
6.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.