Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS.Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC).Findings The PRAISE score showed an AUC of 0.82 (95% CI 0.78-0.85) in the internal validation cohort and 0.92 (0.90-0.93) in the external validation cohort for 1-year all-cause death; an AUC of 0.74 (0.70-0.78) in the internal validation cohort and 0.81 (0.76-0.85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0.70 (0.66-0.75) in the internal validation cohort and 0.86 (0.82-0.89) in the external validation cohort for 1-year major bleeding.Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Copyright (C) 2021 Elsevier Ltd. All rights reserved.

Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

Sergio Leonardi;Claudio Montalto;
2021-01-01

Abstract

Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS.Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC).Findings The PRAISE score showed an AUC of 0.82 (95% CI 0.78-0.85) in the internal validation cohort and 0.92 (0.90-0.93) in the external validation cohort for 1-year all-cause death; an AUC of 0.74 (0.70-0.78) in the internal validation cohort and 0.81 (0.76-0.85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0.70 (0.66-0.75) in the internal validation cohort and 0.86 (0.82-0.89) in the external validation cohort for 1-year major bleeding.Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. Copyright (C) 2021 Elsevier Ltd. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1438757
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 183
  • ???jsp.display-item.citation.isi??? 163
social impact