We present a systematic treatment of scattering processes for quantum systems whose time evolution is discrete. We define and show some general properties of the scattering operator, in particular the conservation of quasienergy which is defined only modulo 2π. Then we develop two perturbative techniques for the power series expansion of the scattering operator, the first one analogous to the iterative solution of the Lippmann-Schwinger equation, the second one to the Dyson series of perturbative quantum field theory. We use this formalism to compare the scattering amplitudes of a continuous-time model and of the corresponding discretized one. We give a rigorous assessment of the comparison for the case of bounded free Hamiltonian, as in a lattice theory with a bounded number of particles. Our framework can be applied to a wide class of quantum simulators, like quantum walks and quantum cellular automata. As a case study, we analyze the scattering properties of a one-dimensional cellular automaton with locally interacting fermions.

Scattering and Perturbation Theory for Discrete-Time Dynamics

Bisio A.
;
Mosco N.;Perinotti P.
2021-01-01

Abstract

We present a systematic treatment of scattering processes for quantum systems whose time evolution is discrete. We define and show some general properties of the scattering operator, in particular the conservation of quasienergy which is defined only modulo 2π. Then we develop two perturbative techniques for the power series expansion of the scattering operator, the first one analogous to the iterative solution of the Lippmann-Schwinger equation, the second one to the Dyson series of perturbative quantum field theory. We use this formalism to compare the scattering amplitudes of a continuous-time model and of the corresponding discretized one. We give a rigorous assessment of the comparison for the case of bounded free Hamiltonian, as in a lattice theory with a bounded number of particles. Our framework can be applied to a wide class of quantum simulators, like quantum walks and quantum cellular automata. As a case study, we analyze the scattering properties of a one-dimensional cellular automaton with locally interacting fermions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1438817
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact