In the context of non-invasive documentation for the prevention of built heritage, digital surveying and the development of 3D models are widely applied. They have highlighted, with increasing reliability, the opportunities for knowledge and mapping on emerging damages related to safety and structural integrity. However, these processes can reach high-quality results on morphological structural detail, useful as source data for static analysis on the built structures. In this way, 3D models serve as source data for preliminary diagnostics on the causes of drift and deformation mechanisms. The research aims to validate the proposed strategy on the case study of a masonry historical building damaged by the 2016 earthquake in Central Italy, to configure the mesh modeling strategy as a scientific example capable of orienting 3D modeling practices for structural non-invasive diagnosis, also in emergency requirements of intervention. The analysis of the damage mechanisms was performed by exploiting the morphological detail of the virtual surfaces to operate a direct segmentation, automated through the recognition of Feature Regions entities. It was based on the collaboration among professionals and technicians of the Emergency Support Department of EUCENTRE and DAda-LAB researchers of University of Pavia, to evaluate appropriate procedures of digital documentation for on-site survey in sites affected by emergency conditions of post-earthquake damage.

MANAGEMENT OF MESH FEATURES IN 3D REALITY-BASED POLYGONAL MODELS TO SUPPORT NON-INVASIVE STRUCTURAL DIAGNOSIS AND EMERGENCY ANALYSIS IN THE CONTEXT OF EARTHQUAKE HERITAGE IN ITALY

De Marco, R.
;
Parrinello, S.
2021-01-01

Abstract

In the context of non-invasive documentation for the prevention of built heritage, digital surveying and the development of 3D models are widely applied. They have highlighted, with increasing reliability, the opportunities for knowledge and mapping on emerging damages related to safety and structural integrity. However, these processes can reach high-quality results on morphological structural detail, useful as source data for static analysis on the built structures. In this way, 3D models serve as source data for preliminary diagnostics on the causes of drift and deformation mechanisms. The research aims to validate the proposed strategy on the case study of a masonry historical building damaged by the 2016 earthquake in Central Italy, to configure the mesh modeling strategy as a scientific example capable of orienting 3D modeling practices for structural non-invasive diagnosis, also in emergency requirements of intervention. The analysis of the damage mechanisms was performed by exploiting the morphological detail of the virtual surfaces to operate a direct segmentation, automated through the recognition of Feature Regions entities. It was based on the collaboration among professionals and technicians of the Emergency Support Department of EUCENTRE and DAda-LAB researchers of University of Pavia, to evaluate appropriate procedures of digital documentation for on-site survey in sites affected by emergency conditions of post-earthquake damage.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1438984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact