Background: On 30 January 2020, a public health emergency of international concern was declared as a result of the new COVID-19 disease, caused by the SARS-CoV-2 virus. This virus is transmitted by air and, therefore, clinical practices with the production of contaminant aerosols are highly at risk. The purpose of this review was to assess the effectiveness of bio-inspired systems, as adjuvants to nonsurgical periodontal therapy, in order to formulate bio-inspired protocols aimed at restoring optimal condition, reducing bacteremia and aerosols generation. Methods: A comprehensive and bibliometric review of articles published in English. Research of clinical trials (RCTs) were included with participants with chronic or aggressive periodontal disease, that have compared benefits for nonsurgical periodontal therapy (NSPT). Results: Seventy-four articles have been included. For probing depth (PPD) there was a statically significant improvement in laser, probiotic, chlorhexidine groups, such as gain in clinical attachment level (CAL). Bleeding on probing (BOP) reduction was statistically significant only for probiotic and chlorhexidine groups. There were changes in microbiological and immunological parameters. Conclusions: The use of bio-inspired systems in nonsurgical periodontal treatment may be useful in reducing risk of bacteremia and aerosol generation, improving clinical, microbiological and immunological parameters, of fundamental importance in a context of global pandemic, where the reduction of bacterial load in aerosols becomes a pivotal point of clinical practice, but other clinical trials are necessary to achieve statistical validity.

Bio-inspired systems in nonsurgical periodontal therapy to reduce contaminated aerosol during COVID-19: A comprehensive and bibliometric review

Butera A.;Scribante A.
2020

Abstract

Background: On 30 January 2020, a public health emergency of international concern was declared as a result of the new COVID-19 disease, caused by the SARS-CoV-2 virus. This virus is transmitted by air and, therefore, clinical practices with the production of contaminant aerosols are highly at risk. The purpose of this review was to assess the effectiveness of bio-inspired systems, as adjuvants to nonsurgical periodontal therapy, in order to formulate bio-inspired protocols aimed at restoring optimal condition, reducing bacteremia and aerosols generation. Methods: A comprehensive and bibliometric review of articles published in English. Research of clinical trials (RCTs) were included with participants with chronic or aggressive periodontal disease, that have compared benefits for nonsurgical periodontal therapy (NSPT). Results: Seventy-four articles have been included. For probing depth (PPD) there was a statically significant improvement in laser, probiotic, chlorhexidine groups, such as gain in clinical attachment level (CAL). Bleeding on probing (BOP) reduction was statistically significant only for probiotic and chlorhexidine groups. There were changes in microbiological and immunological parameters. Conclusions: The use of bio-inspired systems in nonsurgical periodontal treatment may be useful in reducing risk of bacteremia and aerosol generation, improving clinical, microbiological and immunological parameters, of fundamental importance in a context of global pandemic, where the reduction of bacterial load in aerosols becomes a pivotal point of clinical practice, but other clinical trials are necessary to achieve statistical validity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11571/1439214
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact