A milestone of Industry 4.0 is the improvement of the design procedures requiring models of complex processes. Models can be used to simulate the process, being accurate even if complex, and to predict process behaviour for control action, requiring simplicity and stability. In the last years, machine learning approaches came up alongside of the standard identification techniques for prediction purposes. In this work we propose two models of an industrial autoclave to describe the evolution of temperature and pressure. The first model (PhM) involves a physical structure with data-driven adaptation of the parameters, the second one is a Long Short-Term Memory network (LSTM), trained ensuring Input-to-State stability. Both models obtained good performance: FIT of 94.26% (91.55%) for the temperature (pressure) with PhM; 84.59% (78.31 %) for the temperature (pressure) with the LSTM. Future developments involve the synthesis of an MPC based on the LSTM to be tested in simulation via PhM.

Improvement of manufacturing technologies through a modelling approach: An air-steam sterilization case-study

Iacono F.;Schimperna I.;Ferretti S.;Magni L.;Toffanin C.
2021-01-01

Abstract

A milestone of Industry 4.0 is the improvement of the design procedures requiring models of complex processes. Models can be used to simulate the process, being accurate even if complex, and to predict process behaviour for control action, requiring simplicity and stability. In the last years, machine learning approaches came up alongside of the standard identification techniques for prediction purposes. In this work we propose two models of an industrial autoclave to describe the evolution of temperature and pressure. The first model (PhM) involves a physical structure with data-driven adaptation of the parameters, the second one is a Long Short-Term Memory network (LSTM), trained ensuring Input-to-State stability. Both models obtained good performance: FIT of 94.26% (91.55%) for the temperature (pressure) with PhM; 84.59% (78.31 %) for the temperature (pressure) with the LSTM. Future developments involve the synthesis of an MPC based on the LSTM to be tested in simulation via PhM.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1439477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact