The dispersion of photonic modes in one-dimensional (1-D) and two-dimensional (2-D) patterned silicon-on-insulator (SOI) waveguides, also containing line defects, is fully investigated both above and below the light line. Quasi-guided (radiative), as well as truly guided modes are probed by means of angle and polarization-resolved microreflectance and attenuated total reflectance measurements. For the 1-D case, the sharp resonances observed in reflectance spectra are analyzed in terms of the Airy-Fano model, and the measured linewidths are shown to be very close to theoretical predictions. In the 2-D lattices containing W1 line defects the presence of a supercell repetition leads to the simultaneous excitation of defect and bulk modes which are folded in a reduced Brillouin zone. The measured dispersion is in very good agreement with full three-dimensional calculations based on expansion on the waveguide modes, indicating that a deep understanding of the propagation properties of patterned SOI waveguides is achieved.

Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs

GALLI, MATTEO;BAJONI, DANIELE;BELOTTI, MICHELE;PATRINI, MADDALENA;GUIZZETTI, GIORGIO;GERACE, DARIO;AGIO, MARIO;ANDREANI, LUCIO;
2005

Abstract

The dispersion of photonic modes in one-dimensional (1-D) and two-dimensional (2-D) patterned silicon-on-insulator (SOI) waveguides, also containing line defects, is fully investigated both above and below the light line. Quasi-guided (radiative), as well as truly guided modes are probed by means of angle and polarization-resolved microreflectance and attenuated total reflectance measurements. For the 1-D case, the sharp resonances observed in reflectance spectra are analyzed in terms of the Airy-Fano model, and the measured linewidths are shown to be very close to theoretical predictions. In the 2-D lattices containing W1 line defects the presence of a supercell repetition leads to the simultaneous excitation of defect and bulk modes which are folded in a reduced Brillouin zone. The measured dispersion is in very good agreement with full three-dimensional calculations based on expansion on the waveguide modes, indicating that a deep understanding of the propagation properties of patterned SOI waveguides is achieved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/144220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact