In this paper we consider a Boltzmann-type kinetic description of Follow-the-Leader traffic dynamics and we study the resulting asymptotic distributions, namely the counterpart of the Maxwellian distribution of the classical kinetic theory. In the Boltzmann-type equation we include a non-constant collision kernel, in the form of a cutoff, in order to exclude from the statistical model possibly unphysical interactions. In spite of the increased analytical difficulty caused by this further non-linearity, we show that a careful application of the quasi-invariant limit (an asymptotic procedure reminiscent of the grazing collision limit) successfully leads to a Fokker–Planck approximation of the original Boltzmann-type equation, whence stationary distributions can be explicitly computed. Our analytical results justify, from a genuinely model-based point of view, some empirical results found in the literature by interpolation of experimental data.

Boltzmann-Type Description with Cutoff of Follow-the-Leader Traffic Models

Tosin A.
;
Zanella M.
2021-01-01

Abstract

In this paper we consider a Boltzmann-type kinetic description of Follow-the-Leader traffic dynamics and we study the resulting asymptotic distributions, namely the counterpart of the Maxwellian distribution of the classical kinetic theory. In the Boltzmann-type equation we include a non-constant collision kernel, in the form of a cutoff, in order to exclude from the statistical model possibly unphysical interactions. In spite of the increased analytical difficulty caused by this further non-linearity, we show that a careful application of the quasi-invariant limit (an asymptotic procedure reminiscent of the grazing collision limit) successfully leads to a Fokker–Planck approximation of the original Boltzmann-type equation, whence stationary distributions can be explicitly computed. Our analytical results justify, from a genuinely model-based point of view, some empirical results found in the literature by interpolation of experimental data.
2021
978-3-030-67103-7
978-3-030-67104-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1446035
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact