This paper presents the first determination of the spatial resolution of the ANET Compact Neutron Collimator, obtained with a measuring campaign at the LENA Mark-II TRIGA reactor in Pavia. This novel collimator consists of a sequence of collimating and absorbing channels organised in a chessboard-like geometry. It has a scalable structure both in length and in the field of view. It is characterized by an elevated collimation power within a limited length. Its scalability and compactness are added values with respect to traditional collimating system. The prototype tested in this article is composed of 4 concatenated stages, each 100 mm long, with a channel width of 2.5 mm, delivering a nominal L/D factor of 160. This measuring campaign illustrates the use of the ANET collimator and its potential application in neutron imaging for facilities with small or medium size neutron sources.

First results with the ANET Compact Thermal Neutron Collimator

Altieri S.
2021-01-01

Abstract

This paper presents the first determination of the spatial resolution of the ANET Compact Neutron Collimator, obtained with a measuring campaign at the LENA Mark-II TRIGA reactor in Pavia. This novel collimator consists of a sequence of collimating and absorbing channels organised in a chessboard-like geometry. It has a scalable structure both in length and in the field of view. It is characterized by an elevated collimation power within a limited length. Its scalability and compactness are added values with respect to traditional collimating system. The prototype tested in this article is composed of 4 concatenated stages, each 100 mm long, with a channel width of 2.5 mm, delivering a nominal L/D factor of 160. This measuring campaign illustrates the use of the ANET collimator and its potential application in neutron imaging for facilities with small or medium size neutron sources.
2021
Applied Physics/Condensed Matter/Materials Science encompasses the resources of three related disciplines: Applied Physics, Condensed Matter Physics, and Materials Science. The applied physics resources are concerned with the applications of topics in condensed matter as well as optics, vacuum science, lasers, electronics, cryogenics, magnets and magnetism, acoustical physics and mechanics. The condensed matter physics resources are concerned with the study of the structure and the thermal, mechanical, electrical, magnetic and optical properties of condensed matter. They include superconductivity, surfaces, interfaces, thin films, dielectrics, ferroelectrics and semiconductors. The materials science resources are concerned with the physics and chemistry of materials and include ceramics, composites, alloys, metals and metallurgy, nanotechnology, nuclear materials, adhesion and adhesives. Resources dealing with polymeric materials are listed in the Organic Chemistry/Polymer Science category.
Comitato scientifico
Inglese
Internazionale
STAMPA
16
11
P11025
9
9 pages, 8 figures, prepared for submission to JINST
Instrumentation for neutron sources; Neutron radiography; Physics - Instrumentation and Detectors; Physics - Instrumentation and Detectors; Nuclear Experiment; Physics - Accelerator Physics
http://arxiv.org/abs/2110.09345v1
no
10
info:eu-repo/semantics/article
262
Sans-Planell, O.; Costa, M.; Durisi, E.; Mafucci, E.; Menzio, L.; Monti, V.; Visca, L.; Grazzi, F.; Bedogni, R.; Altieri, S.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1447259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 24
social impact