In this paper we construct Shimura subvarieties of dimension bigger than one of the moduli space of polarised abelian varieties of a given dimension, which are generically contained in the Pym loci of (ramified) double covers. The idea is to adapt the techniques already used to construct Shimura curves in the Prym loci to the higher dimensional case, namely to use families of Galois covers of the projective line. The case of abelian covers is treated in detail, since in this case it is possible to make explicit computations that allow to verify a sufficient condition for such a family to yield a Shimura subvariety of the space polarised abelian varieties of a given dimension.

HIGHER DIMENSIONAL SHIMURA VARIETIES IN THE PRYM LOCI OF RAMIFIED DOUBLE COVERS

Frediani Paola;
2023-01-01

Abstract

In this paper we construct Shimura subvarieties of dimension bigger than one of the moduli space of polarised abelian varieties of a given dimension, which are generically contained in the Pym loci of (ramified) double covers. The idea is to adapt the techniques already used to construct Shimura curves in the Prym loci to the higher dimensional case, namely to use families of Galois covers of the projective line. The case of abelian covers is treated in detail, since in this case it is possible to make explicit computations that allow to verify a sufficient condition for such a family to yield a Shimura subvariety of the space polarised abelian varieties of a given dimension.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1447434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact