The desirable self-assembly (SA) of repeated 2D stacked layers requires a “holistic analysis” of three interconnected components: the electrode, the interface, and the molecular component; among them, the contact interface bears the largest burden responsibilities. Epitaxial growth (EG) of coherent 2D+n stacked heterojunction by solvent-free deposition holds great promise, although the feasibility has never been demonstrated given multiple drawbacks (e.g., surface-ligand effect, SLE). Here, it is demonstrated how a coherent 2D+n (n = 3) layered heterorganic film is grown on an archetypal Fe metal electrode. The groundbreaking achievement is the result of the in-vacuum integration of: i) chemical decoupling of the basal organic layer (a ZnII-tetraphenylporphyrine, ZnTPP) from the metal electrode, ii) 2D-ordering of the ZnTPP commensurate to the substrate, iii) rigid, stoichiometric, and orthogonally arranged, the molecule-to-molecule coupling between ZnTPP and a ditopic linear bridging ligand (i.e., DPNDI) guided by SA coordination chemistry, and iv) sharp (chemical) termination of the layered film.
Out-Of-Plane Metal Coordination for a True Solvent-Free Building with Molecular Bricks: Dodging the Surface Ligand Effect for On-Surface Vacuum Self-Assembly
Orbelli Biroli A.;
2021-01-01
Abstract
The desirable self-assembly (SA) of repeated 2D stacked layers requires a “holistic analysis” of three interconnected components: the electrode, the interface, and the molecular component; among them, the contact interface bears the largest burden responsibilities. Epitaxial growth (EG) of coherent 2D+n stacked heterojunction by solvent-free deposition holds great promise, although the feasibility has never been demonstrated given multiple drawbacks (e.g., surface-ligand effect, SLE). Here, it is demonstrated how a coherent 2D+n (n = 3) layered heterorganic film is grown on an archetypal Fe metal electrode. The groundbreaking achievement is the result of the in-vacuum integration of: i) chemical decoupling of the basal organic layer (a ZnII-tetraphenylporphyrine, ZnTPP) from the metal electrode, ii) 2D-ordering of the ZnTPP commensurate to the substrate, iii) rigid, stoichiometric, and orthogonally arranged, the molecule-to-molecule coupling between ZnTPP and a ditopic linear bridging ligand (i.e., DPNDI) guided by SA coordination chemistry, and iv) sharp (chemical) termination of the layered film.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.