This study highlights the importance of looking beyond the main effect of movement to study alterations in functional response in the presence of central nervous system pathologies such as multiple sclerosis (MS). Data show that MS selectively affects regional BOLD (blood oxygenation level dependent) responses to variable grip forces (GF). It is known that the anterior and posterior BA 4 areas (BA 4a and BA 4p) are anatomically and functionally distinct. It has also been shown in healthy volunteers that there are linear (first order, typical of BA 4a) and nonlinear (second to fourth order, typical of BA 4p) BOLD responses to different levels of GF applied during a dynamic motor paradigm. After modeling the BOLD response with a polynomial expansion of the applied GFs, the particular case of BA 4a and BA 4p were investigated in healthy volunteers (HV) and MS subjects. The main effect of movement (zeroth order) analysis showed that the BOLD signal is greater in MS compared with healthy volunteers within both BA 4 subregions. At higher order, BOLD-GF responses were similar in BA 4a but showed a marked alteration in BA 4p of MS subjects, with those with greatest disability showing the greatest deviations from the healthy response profile. Therefore, the different behaviors in HV and MS could only be uncovered through a polynomial analysis looking beyond the main effect of movement into the two BA 4 subregions. Future studies will investigate the source of this pathophysiology, combining the present fMRI paradigm with blood perfusion and nonlinear neuronal response analysis.

Blood Oxygenation Level-Dependent Response to Multiple Grip Forces in Multiple Sclerosis: Going Beyond the Main Effect of Movement in Brodmann Area 4a and 4p

D'Angelo E.;Gandini Wheeler-Kingshott C. A. M.
2021-01-01

Abstract

This study highlights the importance of looking beyond the main effect of movement to study alterations in functional response in the presence of central nervous system pathologies such as multiple sclerosis (MS). Data show that MS selectively affects regional BOLD (blood oxygenation level dependent) responses to variable grip forces (GF). It is known that the anterior and posterior BA 4 areas (BA 4a and BA 4p) are anatomically and functionally distinct. It has also been shown in healthy volunteers that there are linear (first order, typical of BA 4a) and nonlinear (second to fourth order, typical of BA 4p) BOLD responses to different levels of GF applied during a dynamic motor paradigm. After modeling the BOLD response with a polynomial expansion of the applied GFs, the particular case of BA 4a and BA 4p were investigated in healthy volunteers (HV) and MS subjects. The main effect of movement (zeroth order) analysis showed that the BOLD signal is greater in MS compared with healthy volunteers within both BA 4 subregions. At higher order, BOLD-GF responses were similar in BA 4a but showed a marked alteration in BA 4p of MS subjects, with those with greatest disability showing the greatest deviations from the healthy response profile. Therefore, the different behaviors in HV and MS could only be uncovered through a polynomial analysis looking beyond the main effect of movement into the two BA 4 subregions. Future studies will investigate the source of this pathophysiology, combining the present fMRI paradigm with blood perfusion and nonlinear neuronal response analysis.
2021
Medical Research, General Topics covers a wide array of topics in medical and biomedical research, with a specific emphasis on human disease, human tissues, and all levels of research into the pathogenesis of clinically significant conditions. Specific medical fields that are characterized by the inclusion of material from several other specializations are also covered here; these include general and internal medicine, tropical medicine, pediatrics, gerontology, epidemiology, and public health. Resources dealing with specific clinical interventions are excluded and are placed in the Medical Research: Diagnosis & Treatment category. Resources that emphasize the specific disease types, or specific systems affected are also excluded and are categorized according to the pathogen or system pathophysiology.
Esperti non anonimi
Inglese
Internazionale
ELETTRONICO
15
616028
BA 4a; BA 4p; fMRI; force; multiple sclerosis
7
info:eu-repo/semantics/article
262
Alahmadi, A. A. S.; Pardini, M.; Samson, R. S.; D'Angelo, E.; Friston, K. J.; Toosy, A. T.; Gandini Wheeler-Kingshott, C. A. M.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1449755
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact