The endocannabinoid system exerts an important role in pain processing and modulation. Modulation of the system with hydrolase inhibitors of anandamide (AEA) or 2-arachidonyl glycerol (2-AG) has proved effective in reducing migraine-like features in animal models of migraine. Here, we investigated the effect of dual inhibition of the AEA and 2-AG catabolic pathways in the nitro-glycerin-based animal model of migraine. The dual inhibitor JZL195 was administered to rats 2 h after nitroglycerin or vehicle injection. Rats were then exposed to the open field test and the orofacial formalin test. At the end of the tests, they were sacrificed to evaluate calcitonin gene-related peptide (CGRP) serum levels and gene expression of CGRP and cytokines in the cervical spinal cord and the trigeminal ganglion. The dual inhibitor significantly reduced the nitroglycerin-induced trigeminal hyperalgesia and pain-associated behavior, possibly via cannabinoid 1 receptors-mediated action, but it did not change the hypomotility and the anxiety behaviors induced by nitroglycerin. The decreased hyperalgesia was associated with a reduction in CGRP and cytokine gene expression levels in central and peripheral structures and reduced CGRP serum levels. These data suggest an antinociceptive synergy of the endocannabinoid action in peripheral and central sites, confirming that this system participates in reduction of cephalic pain signals.

Dual inhibition of faah and magl counteracts migraine-like pain and behavior in an animal model of migraine

Francavilla M.;Zanaboni A. M.;Tassorelli C.
2021-01-01

Abstract

The endocannabinoid system exerts an important role in pain processing and modulation. Modulation of the system with hydrolase inhibitors of anandamide (AEA) or 2-arachidonyl glycerol (2-AG) has proved effective in reducing migraine-like features in animal models of migraine. Here, we investigated the effect of dual inhibition of the AEA and 2-AG catabolic pathways in the nitro-glycerin-based animal model of migraine. The dual inhibitor JZL195 was administered to rats 2 h after nitroglycerin or vehicle injection. Rats were then exposed to the open field test and the orofacial formalin test. At the end of the tests, they were sacrificed to evaluate calcitonin gene-related peptide (CGRP) serum levels and gene expression of CGRP and cytokines in the cervical spinal cord and the trigeminal ganglion. The dual inhibitor significantly reduced the nitroglycerin-induced trigeminal hyperalgesia and pain-associated behavior, possibly via cannabinoid 1 receptors-mediated action, but it did not change the hypomotility and the anxiety behaviors induced by nitroglycerin. The decreased hyperalgesia was associated with a reduction in CGRP and cytokine gene expression levels in central and peripheral structures and reduced CGRP serum levels. These data suggest an antinociceptive synergy of the endocannabinoid action in peripheral and central sites, confirming that this system participates in reduction of cephalic pain signals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1450029
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact