Dystonia represents a group of movement disorders characterized by involuntary muscle contractions that result in abnormal posture and twisting movements. In the last 20 years several animal models have been generated, greatly improving our knowledge of the neural and molecular mechanism underlying this pathological condition, but the pathophysiology remains still poorly understood. In this review we will discuss recent genetic factors related to dystonia and the current understanding of synaptic plasticity alterations reported by both clinical and experimental research. We will also present recent evidence involving epigenetics mechanisms in dystonia.
Plasticity, genetics and epigenetics in dystonia: An update
Pisani A.
2022-01-01
Abstract
Dystonia represents a group of movement disorders characterized by involuntary muscle contractions that result in abnormal posture and twisting movements. In the last 20 years several animal models have been generated, greatly improving our knowledge of the neural and molecular mechanism underlying this pathological condition, but the pathophysiology remains still poorly understood. In this review we will discuss recent genetic factors related to dystonia and the current understanding of synaptic plasticity alterations reported by both clinical and experimental research. We will also present recent evidence involving epigenetics mechanisms in dystonia.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.