Background: The advent of next-generation sequencing (NGS) techniques in clinical practice led to a significant advance in gene discovery. We aimed to describe diagnostic yields of a “dynamic” exome-based approach in a cohort of patients with epilepsy associated with neurodevel-opmental disorders. Methods: We conducted a retrospective, observational study on 72 probands. All patients underwent a first diagnostic level of a 135 gene panel, a second of 297 genes for inconclusive cases, and finally, a whole-exome sequencing for negative cases. Diagnostic yields at each step and cost-effectiveness were the objects of statistical analysis. Results: Overall diagnostic yield in our cohort was 37.5%: 29% of diagnoses derived from the first step analysis, 5.5% from the second step, and 3% from the third. A significant difference emerged between the three diagnostic steps (p < 0.01), between the first and second (p = 0.001), and the first and third (p << 0.001). The cost-effectiveness plane indicated that our exome-based “dynamic” approach was better in terms of cost savings and higher diagnostic rate. Conclusions: Our findings suggested that “dynamic” NGS techniques applied to well-phenotyped individuals can save both time and resources. In patients with unexplained epilepsy comorbid with NDDs, our approach might maximize the number of diagnoses achieved.

Diagnostic yield and cost-effectiveness of “dynamic” exome analysis in epilepsy with neurodevelopmental disorders: A tertiary-center experience in Northern Italy

Varesio C.;Ballante E.;Cabini R. F.;Pasca L.;Orcesi S.;Borgatti R.;Valente E. M.;De Giorgis V.
2021-01-01

Abstract

Background: The advent of next-generation sequencing (NGS) techniques in clinical practice led to a significant advance in gene discovery. We aimed to describe diagnostic yields of a “dynamic” exome-based approach in a cohort of patients with epilepsy associated with neurodevel-opmental disorders. Methods: We conducted a retrospective, observational study on 72 probands. All patients underwent a first diagnostic level of a 135 gene panel, a second of 297 genes for inconclusive cases, and finally, a whole-exome sequencing for negative cases. Diagnostic yields at each step and cost-effectiveness were the objects of statistical analysis. Results: Overall diagnostic yield in our cohort was 37.5%: 29% of diagnoses derived from the first step analysis, 5.5% from the second step, and 3% from the third. A significant difference emerged between the three diagnostic steps (p < 0.01), between the first and second (p = 0.001), and the first and third (p << 0.001). The cost-effectiveness plane indicated that our exome-based “dynamic” approach was better in terms of cost savings and higher diagnostic rate. Conclusions: Our findings suggested that “dynamic” NGS techniques applied to well-phenotyped individuals can save both time and resources. In patients with unexplained epilepsy comorbid with NDDs, our approach might maximize the number of diagnoses achieved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1450119
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact