Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA . Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 µm and its internal diameter was 2.61 ± 0.05 mm. The graft’s antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.

Tobramycin supplemented small-diameter vascular grafts for local antibiotic delivery: A preliminary formulation study

Rosalia M.;Grisoli P.
;
Dorati R.;Genta I.;Chiesa E.;Bruni G.;Conti B.
2021-01-01

Abstract

Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA . Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 µm and its internal diameter was 2.61 ± 0.05 mm. The graft’s antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1450307
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact