Using a general computational framework, we derive an optimal error estimate in the L2 norm for a semi discrete method based on high order B-splines Galerkin spatial discretizations, applied to a coupled nonlinear Schrödinger system with cubic nonlinearity. A fully discrete method based on a conservative nonlinear splitting Crank-Nicolson time step is then proposed; and conservation of the mass and the energy is theoretically proven. To validate its accuracy in space and time, and its conservation properties, several numerical experiments are carried out with B-splines up to order 7.
A unified framework of high order structure-preserving B-splines Galerkin methods for coupled nonlinear Schrödinger systems
Sergio Gomez
2021-01-01
Abstract
Using a general computational framework, we derive an optimal error estimate in the L2 norm for a semi discrete method based on high order B-splines Galerkin spatial discretizations, applied to a coupled nonlinear Schrödinger system with cubic nonlinearity. A fully discrete method based on a conservative nonlinear splitting Crank-Nicolson time step is then proposed; and conservation of the mass and the energy is theoretically proven. To validate its accuracy in space and time, and its conservation properties, several numerical experiments are carried out with B-splines up to order 7.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.