The global threat of antimicrobial resistance is driving an urgent need for novel antimicrobial strategies. Functional surfaces are essential to prevent spreading of infection and reduce surface contamination. In this study we have fabricated and characterized multiscale-functional nanotopographies with three levels of functionalization: (1) nanostructure topography in the form of silicon nanowires, (2) covalent chemical modification with (3-aminopropyl)triethoxysilane, and (3) incorporation of chlorhexidine digluconate. Cell viability assays were carried out on two model microorganisms E. coli and S. aureus over these nanotopographic surfaces. Using SEM we have identified two growth modes producing distinctive multicellular structures, i.e. in plane growth for E. coli and out of plane growth for S. aureus. We have also shown that these chemically modified SiNWs arrays are effective in reducing the number of planktonic and surface-attached microorganisms.

Bacterial viability on chemically modified silicon nanowire arrays

Diaz Fernandez Y. A.
2016-01-01

Abstract

The global threat of antimicrobial resistance is driving an urgent need for novel antimicrobial strategies. Functional surfaces are essential to prevent spreading of infection and reduce surface contamination. In this study we have fabricated and characterized multiscale-functional nanotopographies with three levels of functionalization: (1) nanostructure topography in the form of silicon nanowires, (2) covalent chemical modification with (3-aminopropyl)triethoxysilane, and (3) incorporation of chlorhexidine digluconate. Cell viability assays were carried out on two model microorganisms E. coli and S. aureus over these nanotopographic surfaces. Using SEM we have identified two growth modes producing distinctive multicellular structures, i.e. in plane growth for E. coli and out of plane growth for S. aureus. We have also shown that these chemically modified SiNWs arrays are effective in reducing the number of planktonic and surface-attached microorganisms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1451513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 34
social impact