This article highlights recent advances in the controlled self-assembly of nanoparticles to produce dimeric nanoparticle structures. The relevance of this emergent field is discussed in terms of recent applications in plasmonics and chemical catalysis. The concept of bond-valence applied to nanoparticles will be discussed, emphasizing some general approaches that have been successfully used to build these structures. Further, the asymmetric functionalization of nanoparticles surfaces as a path to drive selective aggregation, the use of biomolecules to self-assemble nanoparticles into dimers in solution, and the confinement of aggregates in small cavities are discussed. © 2014 Author(s).

Research update: Progress in synthesis of nanoparticle dimers by self-assembly

DIAZ Fernandez Y.;
2014-01-01

Abstract

This article highlights recent advances in the controlled self-assembly of nanoparticles to produce dimeric nanoparticle structures. The relevance of this emergent field is discussed in terms of recent applications in plasmonics and chemical catalysis. The concept of bond-valence applied to nanoparticles will be discussed, emphasizing some general approaches that have been successfully used to build these structures. Further, the asymmetric functionalization of nanoparticles surfaces as a path to drive selective aggregation, the use of biomolecules to self-assemble nanoparticles into dimers in solution, and the confinement of aggregates in small cavities are discussed. © 2014 Author(s).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1451517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact