Phosphorus depletion represents a significant problem. Ash of incinerated biological sewage sludge (BSS) contains P, but the presence of heavy metals (e.g., Fe and Al) is the main issue. Based on chemical characterization by SEM-EDS, ED-XRF and ICP-OES techniques, the characteristics and P content of bottom ash (BA) and fly ash (FA) of incinerated BSS were very similar. On BA, P extraction carried out in counter-current with an S:L ratio of 1:10 and H2SO4 0.5 M led to better extraction yields than those of a similar test with H2SO4 1 M and an S:L ratio of 1:5 (93% vs. 86%). Comparing yields with H2SO4 0.5 M (S:L ratio of 1:10), the counter-current method gave better results than those of the crossflow method (93% vs. 83.9%), also improving the performance obtained with HCl in crossflow (93% vs. 89.3%). The results suggest that the purification of the acid extract from heavy metals with pH variation was impractical due to metal precipitation as phosphates. Extraction with H2SO4 and subsequent treatment with isoamyl alcohol represented the best option to extract and purify P, leading to 81% extraction yields of P with low amounts of metals.
Extraction and purification of phosphorus from the ashes of incinerated biological sewage sludge
Baldi M.;Martinotti A.;Sorlini S.
;Abba A.;Carnevale Miino M.;Collivignarelli M. C.
2021-01-01
Abstract
Phosphorus depletion represents a significant problem. Ash of incinerated biological sewage sludge (BSS) contains P, but the presence of heavy metals (e.g., Fe and Al) is the main issue. Based on chemical characterization by SEM-EDS, ED-XRF and ICP-OES techniques, the characteristics and P content of bottom ash (BA) and fly ash (FA) of incinerated BSS were very similar. On BA, P extraction carried out in counter-current with an S:L ratio of 1:10 and H2SO4 0.5 M led to better extraction yields than those of a similar test with H2SO4 1 M and an S:L ratio of 1:5 (93% vs. 86%). Comparing yields with H2SO4 0.5 M (S:L ratio of 1:10), the counter-current method gave better results than those of the crossflow method (93% vs. 83.9%), also improving the performance obtained with HCl in crossflow (93% vs. 89.3%). The results suggest that the purification of the acid extract from heavy metals with pH variation was impractical due to metal precipitation as phosphates. Extraction with H2SO4 and subsequent treatment with isoamyl alcohol represented the best option to extract and purify P, leading to 81% extraction yields of P with low amounts of metals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.