This work presents a 3-D-integrated opto-electrical receiver (RX) analog front end (AFE) operating up to 50 Gbs. The electronic integrated circuit (EIC) is fabricated in ST SiGe BiCMOS-55-nm technology and flipped and mounted on top of the ST photonic integrated circuits (PICs) die through copper pillars (Cu-Pi). In the RX chain, a low-power fully differential shunt-feedback trans-impedance amplifier (FD SF-TIA) is exploited to reduce the input-referred noise. Following the TIA, a postamplifier (PA) based on a novel active feedback circuit topology extends the bandwidth (BW) and a buffer delivers the output electrical signal to the 100-Omega differential off-chip load. An automatic offset cancellation loop is included to protect the RX from any offset source at the input. The RX AFE consumes 56 mW from 1.8-V supply voltage and provides a trans-impedance (TI) gain of 78.7Omega with 27-GHz BW. By exploiting the FD SF-TIA with low parasitic capacitance of the germanium photodiodes (Ge-PD) in the photonic die as well as BW recovery by the PA, the RX achieves the sensitivity of -7.5-dBm OMA at Ge-PD and -2.3-dBm OMA at the single-mode fiber (SMF) optical output with bit error rate (BER) of <10-12 and PRBS-7. To the author's best knowledge, among published state-of-the-art 50-Gbs TIAs and RX exploiting SiGe BiCMOS technologies, this work proves the best energy efficiency ((pJbit)) and figure of merit (FoM) ( (GbpsA.mW) ) in terms of sensitivity and power consumption.

Analog Front End of 50-Gbs SiGe BiCMOS Opto-Electrical Receiver in 3-D-Integrated Silicon Photonics Technology

Svelto F.;Mazzanti A.
2022-01-01

Abstract

This work presents a 3-D-integrated opto-electrical receiver (RX) analog front end (AFE) operating up to 50 Gbs. The electronic integrated circuit (EIC) is fabricated in ST SiGe BiCMOS-55-nm technology and flipped and mounted on top of the ST photonic integrated circuits (PICs) die through copper pillars (Cu-Pi). In the RX chain, a low-power fully differential shunt-feedback trans-impedance amplifier (FD SF-TIA) is exploited to reduce the input-referred noise. Following the TIA, a postamplifier (PA) based on a novel active feedback circuit topology extends the bandwidth (BW) and a buffer delivers the output electrical signal to the 100-Omega differential off-chip load. An automatic offset cancellation loop is included to protect the RX from any offset source at the input. The RX AFE consumes 56 mW from 1.8-V supply voltage and provides a trans-impedance (TI) gain of 78.7Omega with 27-GHz BW. By exploiting the FD SF-TIA with low parasitic capacitance of the germanium photodiodes (Ge-PD) in the photonic die as well as BW recovery by the PA, the RX achieves the sensitivity of -7.5-dBm OMA at Ge-PD and -2.3-dBm OMA at the single-mode fiber (SMF) optical output with bit error rate (BER) of <10-12 and PRBS-7. To the author's best knowledge, among published state-of-the-art 50-Gbs TIAs and RX exploiting SiGe BiCMOS technologies, this work proves the best energy efficiency ((pJbit)) and figure of merit (FoM) ( (GbpsA.mW) ) in terms of sensitivity and power consumption.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1451913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact