With the aim to find suitable hydrogen storage materials for stationary and mobile applica-tions, multi-cation amide-based systems have attracted considerable attention, due to their unique hydrogenation kinetics. In this work, Am Zn(NH2)n (with A = Li, K, Na, and Rb) were synthesized via an ammonothermal method. The synthesized phases were mixed via ball milling with LiH to form the systems Am Zn(NH2)n-2nLiH (with m = 2, 4 and n = 4, 6), as well as Na2 Zn(NH2)4·0.5NH3-8LiH. The hydrogen storage properties of the obtained materials were investigated via a combination of calorimetric, spectroscopic, and diffraction methods. As a result of the performed analyses, Rb2 Zn(NH2)4-8LiH appears as the most appealing system. This composite, after de-hydrogenation, can be fully rehydrogenated within 30 s at a temperature between 190◦ C and 200◦ C under a pressure of 50 bar of hydrogen.

De-hydrogenation/Rehydrogenation Properties and Reaction Mechanism of AmZn(NH2)n-2nLiH Systems (A = Li, K, Na, and Rb)

Milanese C.
Formal Analysis
;
2022-01-01

Abstract

With the aim to find suitable hydrogen storage materials for stationary and mobile applica-tions, multi-cation amide-based systems have attracted considerable attention, due to their unique hydrogenation kinetics. In this work, Am Zn(NH2)n (with A = Li, K, Na, and Rb) were synthesized via an ammonothermal method. The synthesized phases were mixed via ball milling with LiH to form the systems Am Zn(NH2)n-2nLiH (with m = 2, 4 and n = 4, 6), as well as Na2 Zn(NH2)4·0.5NH3-8LiH. The hydrogen storage properties of the obtained materials were investigated via a combination of calorimetric, spectroscopic, and diffraction methods. As a result of the performed analyses, Rb2 Zn(NH2)4-8LiH appears as the most appealing system. This composite, after de-hydrogenation, can be fully rehydrogenated within 30 s at a temperature between 190◦ C and 200◦ C under a pressure of 50 bar of hydrogen.
2022
Applied Physics/Condensed Matter/Materials Science encompasses the resources of three related disciplines: Applied Physics, Condensed Matter Physics, and Materials Science. The applied physics resources are concerned with the applications of topics in condensed matter as well as optics, vacuum science, lasers, electronics, cryogenics, magnets and magnetism, acoustical physics and mechanics. The condensed matter physics resources are concerned with the study of the structure and the thermal, mechanical, electrical, magnetic and optical properties of condensed matter. They include superconductivity, surfaces, interfaces, thin films, dielectrics, ferroelectrics and semiconductors. The materials science resources are concerned with the physics and chemistry of materials and include ceramics, composites, alloys, metals and metallurgy, nanotechnology, nuclear materials, adhesion and adhesives. Resources dealing with polymeric materials are listed in the Organic Chemistry/Polymer Science category.
Materials Science & Engineering
The Physical Chemistry/Chemical Physics category includes resources on photochemistry, solid state chemistry, kinetics, catalysis, quantum chemistry, surface chemistry, electro-chemistry, chemical thermodynamics, thermo-physics, colloids, fullerenes and zeolites. Resources dealing with (liquid) crystals and crystallography are also included in this category. This category also includes resources on atomic, molecular and chemical physics, which concerns the structure of atoms and molecules, atomic and molecular interactions with radiation, magnetic resonance and relaxation, Mossbauer effect, and atomic and molecular collision processes and interactions.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
14
3
1672
1684
13
Amides; Energy; Hydrogen storage; In-situ X-ray diffraction; Reaction mechanism
11
info:eu-repo/semantics/article
262
Cao, H.; Pistidda, C.; Richter, T. M. M.; Capurso, G.; Milanese, C.; Tseng, J. -C.; Shang, Y.; Niewa, R.; Chen, P.; Klassen, T.; Dornheim, M.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1452093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact