In order to inform decision-making regarding measures to mitigate the impact of induced seismicity in the Groningen gas field in the Netherlands, a comprehensive seismic risk model has been developed. Starting with gas production scenarios and the consequent reservoir compaction, the model generates synthetic earthquake catalogues which are deployed in Monte Carlo analyses, predicting ground motions at a buried reference rock horizon that are combined with nonlinear amplification factors to estimate response spectral accelerations at the surface. These motions are combined with fragility functions defined for the exposed buildings throughout the region to estimate damage levels, which in turn are transformed to risk in terms of injury through consequence functions. Several older and potentially vulnerable buildings are located on dwelling mounds that were constructed from soils and organic material as a flood defence. These anthropogenic structures are not included in the soil profile models used to develop the amplification factors and hence their influence has not been included in the risk analyses to date. To address this gap in the model, concerted studies have been identified to characterize the dwelling mounds. These include new shear-wave velocity measurements that have enabled dynamic site response analyses to determine the modification of ground shaking due to the presence of the mound. A scheme has then been developed to incorporate the dwelling mounds into the risk calculations, which included an assessment of whether the soil-structure interaction effects for buildings founded on the mounds required modification of the seismic fragility functions.

Incorporating dwelling mounds into induced seismic risk analysis for the Groningen gas field in the Netherlands

Pinho R.;Cavalieri F.;
2022-01-01

Abstract

In order to inform decision-making regarding measures to mitigate the impact of induced seismicity in the Groningen gas field in the Netherlands, a comprehensive seismic risk model has been developed. Starting with gas production scenarios and the consequent reservoir compaction, the model generates synthetic earthquake catalogues which are deployed in Monte Carlo analyses, predicting ground motions at a buried reference rock horizon that are combined with nonlinear amplification factors to estimate response spectral accelerations at the surface. These motions are combined with fragility functions defined for the exposed buildings throughout the region to estimate damage levels, which in turn are transformed to risk in terms of injury through consequence functions. Several older and potentially vulnerable buildings are located on dwelling mounds that were constructed from soils and organic material as a flood defence. These anthropogenic structures are not included in the soil profile models used to develop the amplification factors and hence their influence has not been included in the risk analyses to date. To address this gap in the model, concerted studies have been identified to characterize the dwelling mounds. These include new shear-wave velocity measurements that have enabled dynamic site response analyses to determine the modification of ground shaking due to the presence of the mound. A scheme has then been developed to incorporate the dwelling mounds into the risk calculations, which included an assessment of whether the soil-structure interaction effects for buildings founded on the mounds required modification of the seismic fragility functions.
2022
Civil Engineering covers engineering-based resources in the subfields of structural engineering, geotechnics, earthquake engineering, ocean engineering, water resources and supply, naval engineering, marine engineering, transportation engineering, and municipal engineering. Topics covered include the planning, design, construction, and maintenance of fixed structures and ground facilities for industry, occupancy, transportation, use and control of water, and harbor facilities.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
20
1
255
285
31
Dwelling mounds; Groningen; Induced seismicity; Seismic risk; Terps
15
info:eu-repo/semantics/article
262
Kruiver, P. P.; Pefkos, M.; Meijles, E.; Aalbersberg, G.; Campman, X.; van der Veen, W.; Martin, A.; Ooms-Asshoff, K.; Bommer, J. J.; Rodriguez-Marek,...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1452119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact