It is widely considered that approximately 10% of the population suffers from type 2 diabetes. Unfortunately, the impact of this disease is underestimated. Patient's mortality often occurs due to complications caused by the disease and not the disease itself. Many techniques utilized in modeling diseases are often in the form of a “black box” where the internal workings and complexities are extremely difficult to understand, both from practitioners' and patients' perspective. In this work, we address this issue and present an informative model/pattern, known as a “latent phenotype,” with an aim to capture the complexities of the associated complications' over time. We further extend this idea by using a combination of temporal association rule mining and unsupervised learning in order to find explainable subgroups of patients with more personalized prediction. Our extensive findings show how uncovering the latent phenotype aids in distinguishing the disparities among subgroups of patients based on their complications patterns. We gain insight into how best to enhance the prediction performance and reduce bias in the models applied using uncertainty in the patients' data.

Opening the black box: Personalizing type 2 diabetes patients based on their latent phenotype and temporal associated complication rules

Chiovato L.;
2021-01-01

Abstract

It is widely considered that approximately 10% of the population suffers from type 2 diabetes. Unfortunately, the impact of this disease is underestimated. Patient's mortality often occurs due to complications caused by the disease and not the disease itself. Many techniques utilized in modeling diseases are often in the form of a “black box” where the internal workings and complexities are extremely difficult to understand, both from practitioners' and patients' perspective. In this work, we address this issue and present an informative model/pattern, known as a “latent phenotype,” with an aim to capture the complexities of the associated complications' over time. We further extend this idea by using a combination of temporal association rule mining and unsupervised learning in order to find explainable subgroups of patients with more personalized prediction. Our extensive findings show how uncovering the latent phenotype aids in distinguishing the disparities among subgroups of patients based on their complications patterns. We gain insight into how best to enhance the prediction performance and reduce bias in the models applied using uncertainty in the patients' data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1452585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact