In the sensing field, the development of differential sensors arrays represents one of the most promising trends. In particular, the possibility of jointly exploiting digital images colorimetric analysis and multivariate data elaboration allows the easy, fast and efficient analysis of a high number of analytes or even complex processes monitoring. Among the various applications, food freshness monitoring poses an interesting challenge due to the spoilage processes complexity, the key requirements for this kind of devices and the environmental and social impact. The consumers increasing interest for fresh, high-quality, minimally processed, foods has encouraged many research groups around the world to explore various strategies for the development of freshness monitoring devices, usually called intelligent packaging or smart labels. Based on our research group’s background and on the preliminary results collected during my Master Degree Thesis, we identified a winning approach for the smart labels development. As sensing device, we used different arrays of generalised sensors that, located inside food packages, show colour transitions during food spoilage according to the actual food freshness. Data elaboration includes the first acquisition of arrays’ photographs at given times and in constant lighting conditions, the following RGB triplets acquisition manually selecting the region of interest and the final multivariate analysis to support the naked-eye evaluation. Depending on the applications, both unsupervised and supervised techniques were exploited to develop either descriptive or predictive soft models for spoilage process rationalisation. Starting from a deep investigation of the chemical and microbiological mechanisms responsible for food degradation and of the main features of target by-products, we built a panel of commercial receptors suitable for freshness monitoring and we selected the most effective ones directly performing freshness monitoring experiments on chilled stored protein foods. Furthermore, we tested different solid supports, cheap, commercially available and easy to be implemented in food packaging. The first screening was performed using Colour Catcher©, sold in Italy by Grey. Then we developed and patented a synthetic pathway for the covalent anchoring of the receptors to various solid materials, such as ethylenvinyl alcohol (EVOH), plastic copolymer used in food packaging industry as film barrier, and carboxymethylcellulose (CMC), cellulose-based derivative employed as food additive. Both these materials were tested as solid supports for the smart labels, developing a suitable strategy for their production and application. In any case, the sensors’ preparation was developed applying Design of Experiments, when possible, and specifically defining reproducible and reliable preparation procedures. Various protein foods were tested, such as meats, fishes and milk, and for each one the devices applicability as smart labels in domestic conditions was verified. When possible, sensors performances were validated by independent instrumental methods. The results obtained during this project were definitely encouraging and represents a significant step forward in the field of smart labels both in academia and industry. For this reason, we gave great attention, on one hand, to contributions in national and international congresses and to publications on per review journal while, on the other hand, to patents deposition and to industrial scale-up of the most promising devices, through the constituition of the innovative start-up SAFER Smart Labels.
Lo sviluppo di array di sensori differenziali rappresenta una delle più promettenti linee di ricerca in ambito sensoristico. In particolare, la possibilità di coniugare misure colorimetriche basate su immagini digitali con un approccio multivariato all’ elaborazione dei dati consente la misura facile, rapida ed efficace anche di un numero elevato di analiti o il monitoraggio di processi anche complessi. Fra le diverse applicazioni, il monitoraggio della freschezza degli alimenti rappresenta una delle sfide più interessanti, sia per la complessità dei processi degradativi, che per i requisiti fondamentali richiesti per questi dispositivi e per l’impatto sociale e ambientale. Il crescente interesse dei consumatori per alimenti freschi, di qualità e senza additivi e conservanti ha spinto diversi gruppi di ricerca di tutto il mondo ad esplorare varie strategie per lo sviluppo di sensori per il monitoraggio della freschezza, comunemente chiamati intelligent packaging o smart labels, ponendo un’attenzione particolare sugli alimenti a base proteica. Sulla base del background del gruppo di ricerca e dei risultati preliminari ottenuti nel corso della mia Tesi di Laurea Magistrale, abbiamo individuato un approccio vincente per lo sviluppo di questo genere di sensori. Come dispositivo sensibile, abbiamo utilizzato degli array di sensori generalizzati che, posti all’interno delle confezioni alimentari, mostrassero delle variazioni cromatiche nel corso della degradazione indicative della freschezza in tempo reale. L’elaborazione dei dati prevede l’acquisizione delle fotografie degli array a tempi prestabili ed in condizioni di illuminazione costanti, l’acquisizione delle terne RGB selezionando manualmente l’area del sensore e la loro successiva analisi tramite opportune tecniche chemiometriche a supporto dell’analisi visiva. A seconda delle applicazioni, sono state applicate tecniche unsupervised o supervised finalizzate allo sviluppo di modelli soft descrittivi o predittivi del processo di degradazione. Basandoci sullo studio dei meccanismi chimici e microbiologici alla base della degradazione degli alimenti e delle caratteristiche dei sottoprodotti target, abbiamo costruito un panel di recettori commerciali adatti al monitoraggio della freschezza e abbiamo operato la selezione dei più efficaci direttamente con esperimenti di monitoraggio di alimenti proteici conservati in frigorifero. Abbiamo inoltre testato diversi supporti solidi, disponibili in commercio, di basso costo e di facile implementazione del packaging. Dopo un primo screening condotto usando come supporto solido l’Acchiappacolore©, commercializzato in Italia da Grey, abbiamo messo a punto e brevettato una procedura per l’attacco tramite legame covalente dei recettori a diversi materiali, fra cui l’alcol etilenvinilico (EVOH), polimero plastico in uso nel packaging alimentare come film barriera, e la carbossimetilcellulosa (CMC), derivato cellulosico usato come additivo alimentare. Entrambi questi materiali sono stati investigati come supporto solido per smart labels, mettendo a punto un’opportuna strategia di produzione e applicazione. La preparazione dei sensori è stata messa a punto applicando tecniche di Disegno Sperimentale, ove possibile, e definendo in ogni dettaglio procedure di preparazione riproducibili ed affidabili. Sono state testate diverse tipologie di alimenti, fra cui carni bianche e rosse, pesci e latte, e, per ognuno di essi è stata verificata la possibilità di monitoraggio della freschezza in condizioni di conservazione quanto più possibile vicine a quelle domestiche. Ove possibile, il funzionamento del dispositivo è stato validato tramite opportune analisi strumentali di riferimento. I risultati ottenuti nel corso della ricerca sono stati decisamente incoraggianti e rappresentano un importante passo in avanti nel campo delle smart labels non solo in ambito accademico ma anche industriale.
Sensors designed for analytical determinations and practical applications
MAGNAGHI, LISA RITA
2022-03-21
Abstract
In the sensing field, the development of differential sensors arrays represents one of the most promising trends. In particular, the possibility of jointly exploiting digital images colorimetric analysis and multivariate data elaboration allows the easy, fast and efficient analysis of a high number of analytes or even complex processes monitoring. Among the various applications, food freshness monitoring poses an interesting challenge due to the spoilage processes complexity, the key requirements for this kind of devices and the environmental and social impact. The consumers increasing interest for fresh, high-quality, minimally processed, foods has encouraged many research groups around the world to explore various strategies for the development of freshness monitoring devices, usually called intelligent packaging or smart labels. Based on our research group’s background and on the preliminary results collected during my Master Degree Thesis, we identified a winning approach for the smart labels development. As sensing device, we used different arrays of generalised sensors that, located inside food packages, show colour transitions during food spoilage according to the actual food freshness. Data elaboration includes the first acquisition of arrays’ photographs at given times and in constant lighting conditions, the following RGB triplets acquisition manually selecting the region of interest and the final multivariate analysis to support the naked-eye evaluation. Depending on the applications, both unsupervised and supervised techniques were exploited to develop either descriptive or predictive soft models for spoilage process rationalisation. Starting from a deep investigation of the chemical and microbiological mechanisms responsible for food degradation and of the main features of target by-products, we built a panel of commercial receptors suitable for freshness monitoring and we selected the most effective ones directly performing freshness monitoring experiments on chilled stored protein foods. Furthermore, we tested different solid supports, cheap, commercially available and easy to be implemented in food packaging. The first screening was performed using Colour Catcher©, sold in Italy by Grey. Then we developed and patented a synthetic pathway for the covalent anchoring of the receptors to various solid materials, such as ethylenvinyl alcohol (EVOH), plastic copolymer used in food packaging industry as film barrier, and carboxymethylcellulose (CMC), cellulose-based derivative employed as food additive. Both these materials were tested as solid supports for the smart labels, developing a suitable strategy for their production and application. In any case, the sensors’ preparation was developed applying Design of Experiments, when possible, and specifically defining reproducible and reliable preparation procedures. Various protein foods were tested, such as meats, fishes and milk, and for each one the devices applicability as smart labels in domestic conditions was verified. When possible, sensors performances were validated by independent instrumental methods. The results obtained during this project were definitely encouraging and represents a significant step forward in the field of smart labels both in academia and industry. For this reason, we gave great attention, on one hand, to contributions in national and international congresses and to publications on per review journal while, on the other hand, to patents deposition and to industrial scale-up of the most promising devices, through the constituition of the innovative start-up SAFER Smart Labels.File | Dimensione | Formato | |
---|---|---|---|
Magnaghi_PhD thesis revised (1).pdf
Open Access dal 01/10/2023
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
9.33 MB
Formato
Adobe PDF
|
9.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.