Additive manufacturing processes are driven by moving laser-induced thermal sources which induce strong heat fluxes and fronts of phase change coupled to mechanical fields. Their numerical simulation poses several challenges, e.g. the evolution of the (possibly complex) domain as the specimen is produced and the differences in scales of the problem. In this work, the first aspect is addressed using the Finite Cell Method, an immersed approach that removes the need for meshing and is able to accurately handle complex geometries. For the second aspect we develop a framework with local refinement to selectively increase accuracy where needed, and derefinement in previously refined regions far from the laser source to keep the overall computational cost constant throughout the simulation. In this work, we present the essential theoretical fundament of the computational framework. Then, we show its application to model additive manufacturing processes in various examples, including experimental validation.

The Finite Cell Method for Simulation of Additive Manufacturing

Carraturo, Massimo
Software
;
Reali, Alessandro;Auricchio, Ferdinando;Rank, Ernst
2022-01-01

Abstract

Additive manufacturing processes are driven by moving laser-induced thermal sources which induce strong heat fluxes and fronts of phase change coupled to mechanical fields. Their numerical simulation poses several challenges, e.g. the evolution of the (possibly complex) domain as the specimen is produced and the differences in scales of the problem. In this work, the first aspect is addressed using the Finite Cell Method, an immersed approach that removes the need for meshing and is able to accurately handle complex geometries. For the second aspect we develop a framework with local refinement to selectively increase accuracy where needed, and derefinement in previously refined regions far from the laser source to keep the overall computational cost constant throughout the simulation. In this work, we present the essential theoretical fundament of the computational framework. Then, we show its application to model additive manufacturing processes in various examples, including experimental validation.
2022
978-3-030-92671-7
978-3-030-92672-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1454484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact