The market for nutraceutical molecules is growing at an impressive pace in all Western countries. A convenient source of bioactive compounds is found in vegetable waste products, and their re-use for the recovery of healthy biomolecules would increase the sustainability of the food production system. However, safe, cheap, and sustainable technologies should be applied for the recovery of these beneficial molecules, avoiding the use of toxic organic solvents or expensive equipment. The soil bacterium Bacillus subtilis is naturally endowed with several enzymes targeting complex vegetable polymers. In this work, a raw bacterial culture supernatant was used to assist in the extraction of bioactives using isothermal pressurization cycles. Besides a wild-type Bacillus subtilis strain, a new strain showing increased secretion of cellulases and xylanases, pivotal enzymes for the digestion of the plant cell wall, was also used. Results indicate that the recovery of compounds correlates with the amount of cellulolytic enzymes applied, demonstrating that the pretreatment with non-purified culture broth effectively promotes the release of bioactives from the vegetable matrix. Therefore, this approach is a valid and sustainable procedure for the recovery of bioactive compounds from food waste.
Bacterial-Assisted Extraction of Bioactive Compounds from Cauliflower
Doria E.
Formal Analysis
;Buonocore D.Project Administration
;Marra A.Investigation
;Bontà V.Investigation
;Gazzola A.Data Curation
;Dossena M.Membro del Collaboration Group
;Verri M.Membro del Collaboration Group
;Calvio C.Writing – Original Draft Preparation
2022-01-01
Abstract
The market for nutraceutical molecules is growing at an impressive pace in all Western countries. A convenient source of bioactive compounds is found in vegetable waste products, and their re-use for the recovery of healthy biomolecules would increase the sustainability of the food production system. However, safe, cheap, and sustainable technologies should be applied for the recovery of these beneficial molecules, avoiding the use of toxic organic solvents or expensive equipment. The soil bacterium Bacillus subtilis is naturally endowed with several enzymes targeting complex vegetable polymers. In this work, a raw bacterial culture supernatant was used to assist in the extraction of bioactives using isothermal pressurization cycles. Besides a wild-type Bacillus subtilis strain, a new strain showing increased secretion of cellulases and xylanases, pivotal enzymes for the digestion of the plant cell wall, was also used. Results indicate that the recovery of compounds correlates with the amount of cellulolytic enzymes applied, demonstrating that the pretreatment with non-purified culture broth effectively promotes the release of bioactives from the vegetable matrix. Therefore, this approach is a valid and sustainable procedure for the recovery of bioactive compounds from food waste.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.