Bone mineral density (BMD) reduction and fragility fractures still represent a major source of morbidity in rheumatoid arthritis (RA) patients, despite adequate control of the disease. An increasing number of clinical and experimental evidence supports the role of autoantibodies, espe-cially anti-citrullinated protein antibodies (ACPAs), in causing localized and generalised bone loss in ways that are both dependent on and independent of inflammation and disease activity. The human receptor activator of nuclear factor kappa B and its ligand—the so-called RANK-RANKL pathway—is known to play a key role in promoting osteoclasts’ activation and bone depletion, and RANKL levels were shown to be higher in ACPA-positive early untreated RA patients. Thus, ACPA-positivity can be considered a specific risk factor for systemic and periarticular bone loss. Through the inhibition of the RANK-RANKL system, denosumab is the only antiresorptive drug currently available that exhibits both a systemic anti-osteoporotic activity and a disease-modifying effect when combined with conventional synthetic or biologic disease-modifying anti-rheumatic drugs (DMARDs). Thus, the combination of DMARD and anti-RANKL therapy could be beneficial in the prevention of fragility fractures and structural damage in the subset of RA patients at risk of radiographic progression, as in the presence of ACPAs.

Personalized Therapeutic Strategies in the Management of Osteoporosis in Patients with Autoantibody-Positive Rheumatoid Arthritis

D'Onofrio B.;Di Lernia M.;De Stefano L.;Bugatti S.;Montecucco C.;Bogliolo L.
2022-01-01

Abstract

Bone mineral density (BMD) reduction and fragility fractures still represent a major source of morbidity in rheumatoid arthritis (RA) patients, despite adequate control of the disease. An increasing number of clinical and experimental evidence supports the role of autoantibodies, espe-cially anti-citrullinated protein antibodies (ACPAs), in causing localized and generalised bone loss in ways that are both dependent on and independent of inflammation and disease activity. The human receptor activator of nuclear factor kappa B and its ligand—the so-called RANK-RANKL pathway—is known to play a key role in promoting osteoclasts’ activation and bone depletion, and RANKL levels were shown to be higher in ACPA-positive early untreated RA patients. Thus, ACPA-positivity can be considered a specific risk factor for systemic and periarticular bone loss. Through the inhibition of the RANK-RANKL system, denosumab is the only antiresorptive drug currently available that exhibits both a systemic anti-osteoporotic activity and a disease-modifying effect when combined with conventional synthetic or biologic disease-modifying anti-rheumatic drugs (DMARDs). Thus, the combination of DMARD and anti-RANKL therapy could be beneficial in the prevention of fragility fractures and structural damage in the subset of RA patients at risk of radiographic progression, as in the presence of ACPAs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1459248
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact