It is commonly believed that violins sound differently when finished. However, if the role of varnishes on the vibrational properties of these musical instruments is well-established, how the first components of the complete wood finish impact on the final result is still unclear. According to tradition, the priming process consists of two distinct stages, called pre-treatment and sizing. The literature reports some recipes used by old Cremonese luthiers as primers, mainly based on alkaline aqueous solutions and protein-based glues. In this manuscript, we analyze the impact of these treatments on the mechanical properties of the material. The combination of two pre-treatments and three sizes is considered on nine different plates. We compare the vibrational properties before and after the application and assess the effects of the different primers, also supported by finite element modeling. The main outcome is that the combination of particular treatments on the violin surface before varnishing leads to changes not only to the wood appearance, but also to its vibrational properties. Indeed pre-treatments, often considered negligible in terms of vibrational changes, enhance the penetration of the size into the wood structure and strengthen the impact of the latter on the final rigidity of the material along the longitudinal and radial directions.
The impact of alkaline treatments on elasticity in spruce tonewood
Albano, Michela;Fiocco, Giacomo;Malagodi, Marco;
2022-01-01
Abstract
It is commonly believed that violins sound differently when finished. However, if the role of varnishes on the vibrational properties of these musical instruments is well-established, how the first components of the complete wood finish impact on the final result is still unclear. According to tradition, the priming process consists of two distinct stages, called pre-treatment and sizing. The literature reports some recipes used by old Cremonese luthiers as primers, mainly based on alkaline aqueous solutions and protein-based glues. In this manuscript, we analyze the impact of these treatments on the mechanical properties of the material. The combination of two pre-treatments and three sizes is considered on nine different plates. We compare the vibrational properties before and after the application and assess the effects of the different primers, also supported by finite element modeling. The main outcome is that the combination of particular treatments on the violin surface before varnishing leads to changes not only to the wood appearance, but also to its vibrational properties. Indeed pre-treatments, often considered negligible in terms of vibrational changes, enhance the penetration of the size into the wood structure and strengthen the impact of the latter on the final rigidity of the material along the longitudinal and radial directions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.