Using large scale molecular dynamics simulations, we study in detail the impact of nanometer droplets of low viscosity on flat substrates versus the wettability of the solid plate. The comparison between the molecular dynamics simulations and different macroscopic models reveals that most of these models do not correspond to the simulation results at the nanoscale, in particular for the maximal contact diameter during the nanodroplet impact (D_{max}). We have developed a new model for D_{max} that is in agreement with the simulation data and also takes into account the effects of the liquid-solid wettability. We also propose a new scaling for the time required to reach the maximal contact diameter t_{max} with respect to the impact velocity, which is also in agreement with the observations. With the new model for D_{max} plus the scaling found for t_{max}, we present a master curve collapsing the evolution of the nanometer drop contact diameter during impact for different wettabilities and different impact velocities. We believe our results may help in designing better nanoprinters since they provide an estimation of the maximum impact velocities required to obtain a smooth and homogenous coverage of the surfaces without dry spots.

How Wettability Controls Nanoprinting

Marco Marengo;
2020-01-01

Abstract

Using large scale molecular dynamics simulations, we study in detail the impact of nanometer droplets of low viscosity on flat substrates versus the wettability of the solid plate. The comparison between the molecular dynamics simulations and different macroscopic models reveals that most of these models do not correspond to the simulation results at the nanoscale, in particular for the maximal contact diameter during the nanodroplet impact (D_{max}). We have developed a new model for D_{max} that is in agreement with the simulation data and also takes into account the effects of the liquid-solid wettability. We also propose a new scaling for the time required to reach the maximal contact diameter t_{max} with respect to the impact velocity, which is also in agreement with the observations. With the new model for D_{max} plus the scaling found for t_{max}, we present a master curve collapsing the evolution of the nanometer drop contact diameter during impact for different wettabilities and different impact velocities. We believe our results may help in designing better nanoprinters since they provide an estimation of the maximum impact velocities required to obtain a smooth and homogenous coverage of the surfaces without dry spots.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1465514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact