To exploit the advantageous properties of isogeometric analysis (IGA) in a scan-based setting, it is important to extract a smooth geometric domain from the scan data (e.g., voxel data). IGA-suitable domains can be constructed by convoluting the grayscale data using B-splines. A negative side-effect of this convolution technique is, however, that it can induce topological changes in the process of smoothing when features with a size similar to that of the voxels are encountered. This manuscript presents an enhanced B-spline-based segmentation procedure using a refinement strategy based on truncated hierarchical (TH)Bsplines. A Fourier analysis is presented to explain the effectiveness of local grayscale function refinement in repairing topological anomalies. A moving-window-based topological anomaly detection algorithm is proposed to identify regions in which the grayscale function refinements must be performed. The criterion to identify topological anomalies is based on the Euler characteristic, giving it the capability to distinguish between topological and shape changes. The proposed topology-preserving THB-spline image segmentation strategy is studied using a range of test cases. These tests pertain to both the segmentation procedure itself, and its application in an immersed IGA setting.

Topology-preserving scan-based immersed isogeometric analysis

Ferdinando Auricchio;Alessandro Reali;
2022-01-01

Abstract

To exploit the advantageous properties of isogeometric analysis (IGA) in a scan-based setting, it is important to extract a smooth geometric domain from the scan data (e.g., voxel data). IGA-suitable domains can be constructed by convoluting the grayscale data using B-splines. A negative side-effect of this convolution technique is, however, that it can induce topological changes in the process of smoothing when features with a size similar to that of the voxels are encountered. This manuscript presents an enhanced B-spline-based segmentation procedure using a refinement strategy based on truncated hierarchical (TH)Bsplines. A Fourier analysis is presented to explain the effectiveness of local grayscale function refinement in repairing topological anomalies. A moving-window-based topological anomaly detection algorithm is proposed to identify regions in which the grayscale function refinements must be performed. The criterion to identify topological anomalies is based on the Euler characteristic, giving it the capability to distinguish between topological and shape changes. The proposed topology-preserving THB-spline image segmentation strategy is studied using a range of test cases. These tests pertain to both the segmentation procedure itself, and its application in an immersed IGA setting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1466672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact