The feedforward control can effectively improve the servo performance in applications with high requirements of velocity and acceleration. The iterative feedforward tuning method (IFFT) enables the possibility of both removing the need for prior knowledge of the system plant in model-based feedforward and improving the extrapolation capability for varying tasks of iterative learning control. However, most of IFFT methods require to set the number of basis functions in advance, which is inconvenient to the system design. To tackle this problem, an adaptive data-driven IFFT based on fast recursive algorithm (IFFT-FRA) is developed in this paper. Explicitly, based on FRA the proposed approach can adaptively tune the feedforward structure, which significantly increases the intelligence of the approach. Additionally, a data-based iterative tuning procedure is introduced to achieve the unbiased estimation of parameters optimization in presence of noise. Comparative experiments on a linear motor confirms the effectiveness of the proposed approach. IEEE

An Adaptive Data-Driven Iterative Feedforward Tuning Approach Based on Fast Recursive Algorithm: With Application to A Linear Motor

Zanchetta P.
Membro del Collaboration Group
;
Tang M.
Membro del Collaboration Group
;
2022-01-01

Abstract

The feedforward control can effectively improve the servo performance in applications with high requirements of velocity and acceleration. The iterative feedforward tuning method (IFFT) enables the possibility of both removing the need for prior knowledge of the system plant in model-based feedforward and improving the extrapolation capability for varying tasks of iterative learning control. However, most of IFFT methods require to set the number of basis functions in advance, which is inconvenient to the system design. To tackle this problem, an adaptive data-driven IFFT based on fast recursive algorithm (IFFT-FRA) is developed in this paper. Explicitly, based on FRA the proposed approach can adaptively tune the feedforward structure, which significantly increases the intelligence of the approach. Additionally, a data-based iterative tuning procedure is introduced to achieve the unbiased estimation of parameters optimization in presence of noise. Comparative experiments on a linear motor confirms the effectiveness of the proposed approach. IEEE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1466891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact