Dual-three-phase permanent magnet synchronous machines (DTP-PMSMs) are famous for their fault-tolerant capability. However, the complex modeling, high copper loss, and torque ripple under postfault operation limit their further application. In this article, a fault-tolerant control (FTC) strategy is developed for DTP-PMSMs under the open-phase fault (OPF) with straightforward modeling and smooth output torque. The virtual healthy DTP-PMSM model, where the coordinate transformation, the modulation strategy, and the controller structure remain unchanged under OPF, is adopted in the proposed FTC scheme. And the current references are derived in sinusoidal waves with minimum copper loss. The inaccurate transmission of control signals under OPF is also focused on. Comprehensive theoretical analysis shows the relationship between the controller output voltage and the actual stator voltage should be considered in the proposed FTC strategy; otherwise, distortion in torque and current will be introduced. The voltage compensation is utilized to compensate for the voltage difference and ensure the smooth torque output. Besides, a quasi proportional resonance controller is designed to further suppress the residual torque ripple. The proposed strategy will not induce complex implementation and heavy computation burden. The simulation and experimental results prove the analysis and the effectiveness of the proposed strategy. © 1986-2012 IEEE.

Analysis and Fault-Tolerant Control for Dual-Three-Phase PMSM Based on Virtual Healthy Model

Tang M.
Membro del Collaboration Group
;
Zanchetta P.
Membro del Collaboration Group
2022-01-01

Abstract

Dual-three-phase permanent magnet synchronous machines (DTP-PMSMs) are famous for their fault-tolerant capability. However, the complex modeling, high copper loss, and torque ripple under postfault operation limit their further application. In this article, a fault-tolerant control (FTC) strategy is developed for DTP-PMSMs under the open-phase fault (OPF) with straightforward modeling and smooth output torque. The virtual healthy DTP-PMSM model, where the coordinate transformation, the modulation strategy, and the controller structure remain unchanged under OPF, is adopted in the proposed FTC scheme. And the current references are derived in sinusoidal waves with minimum copper loss. The inaccurate transmission of control signals under OPF is also focused on. Comprehensive theoretical analysis shows the relationship between the controller output voltage and the actual stator voltage should be considered in the proposed FTC strategy; otherwise, distortion in torque and current will be introduced. The voltage compensation is utilized to compensate for the voltage difference and ensure the smooth torque output. Besides, a quasi proportional resonance controller is designed to further suppress the residual torque ripple. The proposed strategy will not induce complex implementation and heavy computation burden. The simulation and experimental results prove the analysis and the effectiveness of the proposed strategy. © 1986-2012 IEEE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1466892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact