Plastic pollution is a growing environmental issue that results in its accumulation and persistence in soil for many decades, with possible effects on soil quality and ecosystem services. Microorganisms, and especially fungi, are a keystone of soil biodiversity and soil metabolic capacity. The aim of this research was to study soil fungal biodiversity and soil microbial metabolic profiles in three different sites in northern Italy, where macro‐ and microplastic concentration in soil was measured. The metabolic analyses of soil microorganisms were performed by Biolog EcoPlates, while the ITS1 fragment of the 18S ribosomal cDNA was used as a target for the metabarcoding of fungal communities. The results showed an intense and significant decrease in soil microbial metabolic ability in the site with the highest concentration of microplastics. Moreover, the soil fungal community composition was significantly different in the most pristine site when compared with the other two sites. The metabarcoding of soil samples revealed a general dominance of Mortierellomycota followed by Ascomycota in all sampled soils. Moreover, a dominance of fungi involved in the degradation of plant residues was observed in all three sites. In conclusion, this study lays the foundation for further research into the effect of plastics on soil microbial communities and their activities.

The Analysis of the Mycobiota in Plastic Polluted Soil Reveals a Reduction in Metabolic Ability

Marta Elisabetta Eleonora Temporiti;Lidia Nicola
;
Carolina Elena Girometta;Chiara Daccò;Solveig Tosi
2022-01-01

Abstract

Plastic pollution is a growing environmental issue that results in its accumulation and persistence in soil for many decades, with possible effects on soil quality and ecosystem services. Microorganisms, and especially fungi, are a keystone of soil biodiversity and soil metabolic capacity. The aim of this research was to study soil fungal biodiversity and soil microbial metabolic profiles in three different sites in northern Italy, where macro‐ and microplastic concentration in soil was measured. The metabolic analyses of soil microorganisms were performed by Biolog EcoPlates, while the ITS1 fragment of the 18S ribosomal cDNA was used as a target for the metabarcoding of fungal communities. The results showed an intense and significant decrease in soil microbial metabolic ability in the site with the highest concentration of microplastics. Moreover, the soil fungal community composition was significantly different in the most pristine site when compared with the other two sites. The metabarcoding of soil samples revealed a general dominance of Mortierellomycota followed by Ascomycota in all sampled soils. Moreover, a dominance of fungi involved in the degradation of plant residues was observed in all three sites. In conclusion, this study lays the foundation for further research into the effect of plastics on soil microbial communities and their activities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1467198
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact