Although prion infections cause cognitive impairment and neuronal death, transcriptional and translational profiling shows progressive derangement within glia but surprisingly little changes within neurons. Here we expressed PrP(C) selectively in neurons and astrocytes of mice. After prion infection, both astrocyte and neuron-restricted PrP(C) expression led to copious brain accumulation of PrPSc. As expected, neuron-restricted expression was associated with typical prion disease. However, mice with astrocyte-restricted PrP(C) expression experienced a normal life span, did not develop clinical disease, and did not show astro- or microgliosis. Besides confirming that PrPSc is innocuous to PrP(C)-deficient neurons, these results show that astrocyte-born PrPSc does not activate the extreme neuroinflammation that accompanies the onset of prion disease and precedes any molecular changes of neurons. This points to a nonautonomous mechanism by which prion-infected neurons instruct astrocytes and microglia to acquire a specific cellular state that, in turn, drives neural dysfunction.
Glial activation in prion diseases is selectively triggered by neuronal PrPSc
Nuvolone, Mario;
2022-01-01
Abstract
Although prion infections cause cognitive impairment and neuronal death, transcriptional and translational profiling shows progressive derangement within glia but surprisingly little changes within neurons. Here we expressed PrP(C) selectively in neurons and astrocytes of mice. After prion infection, both astrocyte and neuron-restricted PrP(C) expression led to copious brain accumulation of PrPSc. As expected, neuron-restricted expression was associated with typical prion disease. However, mice with astrocyte-restricted PrP(C) expression experienced a normal life span, did not develop clinical disease, and did not show astro- or microgliosis. Besides confirming that PrPSc is innocuous to PrP(C)-deficient neurons, these results show that astrocyte-born PrPSc does not activate the extreme neuroinflammation that accompanies the onset of prion disease and precedes any molecular changes of neurons. This points to a nonautonomous mechanism by which prion-infected neurons instruct astrocytes and microglia to acquire a specific cellular state that, in turn, drives neural dysfunction.File | Dimensione | Formato | |
---|---|---|---|
Lakkarajy Glial activation in prion disease Brain Pathol 2022.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
2.87 MB
Formato
Adobe PDF
|
2.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.