This paper studies the mechanism of electrochemically induced carbon–bromine dissociation in 1-Br-2-methylnaphalene in the reduction regime. In particular, the bond dissociation of the relevant radical anion is disassembled at a molecular level, exploiting quantum mechanical calculations including steady-state, equilibrium and dissociation dynamics via dynamic reaction coordinate (DRC) calculations. DRC is a molecular-dynamic-based calculation relying on an ab initio potential surface. This is to achieve a detailed picture of the dissociation process in an elementary molecular detail. From a thermodynamic point of view, all the reaction paths examined are energetically feasible. The obtained results suggest that the carbon halogen bond dissociates following the first electron uptake follow a stepwise mechanism. Indeed, the formation of the bromide anion and an organic radical occurs. The latter reacts to form a binaphthalene intrinsically chiral dimer. This paper is respectfully dedicated to Professors Anny Jutand and Christian Amatore for their outstanding contribution in the field of electrochemical catalysis and electrosynthesis.

On the Dynamics of the Carbon–Bromine Bond Dissociation in the 1-Bromo-2-Methylnaphthalene Radical Anion

Pasini D.;
2022-01-01

Abstract

This paper studies the mechanism of electrochemically induced carbon–bromine dissociation in 1-Br-2-methylnaphalene in the reduction regime. In particular, the bond dissociation of the relevant radical anion is disassembled at a molecular level, exploiting quantum mechanical calculations including steady-state, equilibrium and dissociation dynamics via dynamic reaction coordinate (DRC) calculations. DRC is a molecular-dynamic-based calculation relying on an ab initio potential surface. This is to achieve a detailed picture of the dissociation process in an elementary molecular detail. From a thermodynamic point of view, all the reaction paths examined are energetically feasible. The obtained results suggest that the carbon halogen bond dissociates following the first electron uptake follow a stepwise mechanism. Indeed, the formation of the bromide anion and an organic radical occurs. The latter reacts to form a binaphthalene intrinsically chiral dimer. This paper is respectfully dedicated to Professors Anny Jutand and Christian Amatore for their outstanding contribution in the field of electrochemical catalysis and electrosynthesis.
2022
The Organic Chemistry/Polymer Science category includes resources concerned with the related fields of organic chemistry and polymer science. The organic chemistry resources deal with compounds of carbon with the exception of certain simple ones, such as the carbon oxides, carbonates, cyanides and cyanates (see Inorganic & Nuclear Chemistry). This category includes research on synthetic and natural organic compounds that may include other elements, such as hydrogen and oxygen, but also nitrogen, halogens, sulphur and phosphorous. Resources concerned with hydrocarbons, organic compounds containing only the elements carbon and hydrogen, are also included in this category. Examples are the alkanes, alkenes, alkynes and aromatics, such as benzene and naphthalene. Polymer science includes all resources dealing with the study, production and technology of polymers, which are compounds composed of very large molecules made up of repeating molecular units (monomers). Polymers may be natural substances, such as polysaccharides or proteins, or synthetic materials, such as nylon or polyethylene.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
27
14
4539
1-bromo-2-methylnaphthalene; DFT; dissociation; DRC; electron affinity; molecular dynamics; potential energy surface; radical anion
no
7
info:eu-repo/semantics/article
262
Bonechi, M.; Giurlani, W.; Innocenti, M.; Pasini, D.; Mishra, S.; Giovanardi, R.; Fontanesi, C.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1467289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact