Bone responses to pulsed electromagnetic fields (PEMFs) have been extensively studied by using devices that expose bone cells to PEMFs to stimulate extracellular matrix (ECM) synthesis for bone and cartilage repair. The aim of this work was to highlight in which bone healing phase PEMFs exert their action. Specifically, we evaluated the effects of PEMFs both on human adipose mesenchymal stem cells (hASCs) and on primary human osteoblasts (hOBs) by testing gene and protein expression of early bone markers (on hASCs) and the synthesis of late bone-specific proteins (on hOBs) as markers of bone remodeling. Our results indicate that PEMFs seem to exert their action on bone formation, acting on osteogenic precursors (hASCs) and inducing the commitment towards the differentiation pathways, unlike mature and terminally differentiated cells (hOBs), which are known to resist homeostasis perturbation more and seem to be much less responsive than mesenchymal stem cells. Understanding the role of PEMFs on bone regenerative processes provides important details for their clinical application.

The Role of PEMFs on Bone Healing: An In Vitro Study

Caliogna, Laura;Bina, Valentina;Annunziata, Salvatore;Mosconi, Mario;Grassi, Federico;Benazzo, Francesco;
2022-01-01

Abstract

Bone responses to pulsed electromagnetic fields (PEMFs) have been extensively studied by using devices that expose bone cells to PEMFs to stimulate extracellular matrix (ECM) synthesis for bone and cartilage repair. The aim of this work was to highlight in which bone healing phase PEMFs exert their action. Specifically, we evaluated the effects of PEMFs both on human adipose mesenchymal stem cells (hASCs) and on primary human osteoblasts (hOBs) by testing gene and protein expression of early bone markers (on hASCs) and the synthesis of late bone-specific proteins (on hOBs) as markers of bone remodeling. Our results indicate that PEMFs seem to exert their action on bone formation, acting on osteogenic precursors (hASCs) and inducing the commitment towards the differentiation pathways, unlike mature and terminally differentiated cells (hOBs), which are known to resist homeostasis perturbation more and seem to be much less responsive than mesenchymal stem cells. Understanding the role of PEMFs on bone regenerative processes provides important details for their clinical application.
2022
Medical Research, General Topics covers a wide array of topics in medical and biomedical research, with a specific emphasis on human disease, human tissues, and all levels of research into the pathogenesis of clinically significant conditions. Specific medical fields that are characterized by the inclusion of material from several other specializations are also covered here; these include general and internal medicine, tropical medicine, pediatrics, gerontology, epidemiology, and public health. Resources dealing with specific clinical interventions are excluded and are placed in the Medical Research: Diagnosis & Treatment category. Resources that emphasize the specific disease types, or specific systems affected are also excluded and are categorized according to the pathogen or system pathophysiology.
Inglese
23
22
14298
bone regeneration; fracture healing; fracture repair; human adipose mesenchymal stem cells (hASCs); human osteoblasts (hOBs); osteogenic differentiation; pulsed electromagnetic fields (PEMFs); Humans; Osteogenesis; Cell Differentiation; Osteoblasts; Electromagnetic Fields; Mesenchymal Stem Cells
9
info:eu-repo/semantics/article
262
Caliogna, Laura; Bina, Valentina; Brancato, Alice Maria; Gastaldi, Giulia; Annunziata, Salvatore; Mosconi, Mario; Grassi, Federico; Benazzo, Francesco...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1467594
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact