Deferoxamine (DFO) is a siderophore widely studied for its ability to bind iron(III) strongly. Thanks to its versatility, it is suitable for several clinical and analytical applications, from the recognized iron(III) chelation therapy to the most recent applications in sensing. The presence of three hydroxamic functional groups enables Deferoxamine to form stable complexes with iron(III) and other divalent and trivalent metal ions. Moreover, the terminal amino group in the DFO molecule, not involved in metal ion complexation, allows modification or functionalization of solid phases, nanoobjects, biopolymers, electrodes and optical devices. This review summarizes and discusses deferoxamine-based applications for the chelation and recognition of Fe(III).
Deferoxamine-Based Materials and Sensors for Fe(III) Detection
Alberti, G;Zanoni, C;Magnaghi, LR;Biesuz, R
2022-01-01
Abstract
Deferoxamine (DFO) is a siderophore widely studied for its ability to bind iron(III) strongly. Thanks to its versatility, it is suitable for several clinical and analytical applications, from the recognized iron(III) chelation therapy to the most recent applications in sensing. The presence of three hydroxamic functional groups enables Deferoxamine to form stable complexes with iron(III) and other divalent and trivalent metal ions. Moreover, the terminal amino group in the DFO molecule, not involved in metal ion complexation, allows modification or functionalization of solid phases, nanoobjects, biopolymers, electrodes and optical devices. This review summarizes and discusses deferoxamine-based applications for the chelation and recognition of Fe(III).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.