We interact with the world around us by sensing a vast array of inputs and translating them into signals that can be interpreted by the brain. We have evolved many sensory receptors, each uniquely specialised to detect diverse stimuli. The hair cells are sensory receptors, initially developed to provide a sense of body position and movement, but later adapted to sense minute pressure waves in the environment that are perceived as sounds. As such, hair cells bestow a sense of hearing and bal ance, which are major advantages for survival. Mammals have four different types of hair cell, two of which are dedicated to hearing, the inner and outer hair cells, and the other two to balance, the type-I and type-II hair cells. While all hair cells employ common mechanisms to detect and relay signals from sound or motion, they also have unique attributes that specialise them for a specific functional role. In this chapter we describe the process of signal transmission in mammalian auditory and vestibular hair cells. Since mammalian hair cells do not regenerate, their loss results in permanent auditory or vestibular deficit. Efforts to regenerate or repair malfunctioning hair cells have recently intensified, mainly through gene, stem-cell and molecular therapy.
Signal Transmission by Auditory and Vestibular Hair Cells
Sergio Masetto
Writing – Review & Editing
;Paolo SpaiardiInvestigation
;
2022-01-01
Abstract
We interact with the world around us by sensing a vast array of inputs and translating them into signals that can be interpreted by the brain. We have evolved many sensory receptors, each uniquely specialised to detect diverse stimuli. The hair cells are sensory receptors, initially developed to provide a sense of body position and movement, but later adapted to sense minute pressure waves in the environment that are perceived as sounds. As such, hair cells bestow a sense of hearing and bal ance, which are major advantages for survival. Mammals have four different types of hair cell, two of which are dedicated to hearing, the inner and outer hair cells, and the other two to balance, the type-I and type-II hair cells. While all hair cells employ common mechanisms to detect and relay signals from sound or motion, they also have unique attributes that specialise them for a specific functional role. In this chapter we describe the process of signal transmission in mammalian auditory and vestibular hair cells. Since mammalian hair cells do not regenerate, their loss results in permanent auditory or vestibular deficit. Efforts to regenerate or repair malfunctioning hair cells have recently intensified, mainly through gene, stem-cell and molecular therapy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.