Although mouse-tracking has been seen as a real-time window into different aspects of human decision-making processes, currently little is known about how the decision process unfolds in veridical and false memory retrieval. Here, we directly investigated decision-making processes by predicting participants' performance in a mouse-tracking version of a typical Deese-Roediger-McDermott (DRM) task through distributional semantic models, a usage-based approach to meaning. Participants were required to study lists of associated words and then to perform a recognition task with the mouse. Results showed that mouse trajectories were extensively affected by the semantic similarity between the words presented in the recognition phase and the ones previously studied. In particular, the higher the semantic similarity, the larger the conflict driving the choice and the higher the irregularity in the trajectory when correctly rejecting new words (i.e., the false memory items). Conversely, on the temporal evolution of the decision, our results showed that semantic similarity affects more complex temporal measures indexing the online decision processes subserving task performance. Together, these findings demonstrate that semantic similarity can affect human behavior at the level of motor control, testifying its influence on online decision-making processes. More generally, our findings complement previous seminal theories on false memory and provide insights into the impact of the semantic memory structure on different decision-making components.
Hands-on false memories: a combined study with distributional semantics and mouse-tracking
Gatti, Daniele
;Vecchi, Tomaso;Rinaldi, Luca
2022-01-01
Abstract
Although mouse-tracking has been seen as a real-time window into different aspects of human decision-making processes, currently little is known about how the decision process unfolds in veridical and false memory retrieval. Here, we directly investigated decision-making processes by predicting participants' performance in a mouse-tracking version of a typical Deese-Roediger-McDermott (DRM) task through distributional semantic models, a usage-based approach to meaning. Participants were required to study lists of associated words and then to perform a recognition task with the mouse. Results showed that mouse trajectories were extensively affected by the semantic similarity between the words presented in the recognition phase and the ones previously studied. In particular, the higher the semantic similarity, the larger the conflict driving the choice and the higher the irregularity in the trajectory when correctly rejecting new words (i.e., the false memory items). Conversely, on the temporal evolution of the decision, our results showed that semantic similarity affects more complex temporal measures indexing the online decision processes subserving task performance. Together, these findings demonstrate that semantic similarity can affect human behavior at the level of motor control, testifying its influence on online decision-making processes. More generally, our findings complement previous seminal theories on false memory and provide insights into the impact of the semantic memory structure on different decision-making components.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.