In this work we have theoretically investigated the optical response of a one-dimensional array of strongly nonlinear optical microcavities. When the optical nonlinearity is much larger than both losses and intercavity tunnel coupling, the nonequilibrium steady state of the system is reminiscent of what is known as a strongly correlated Tonks-Girardeau gas of impenetrable bosons. Signatures of strong correlations are identified in the transmission spectrum of the system, as well as in the intensity correlations of the transmitted light. Possible experimental implementations in state-of-the-art solid-state devices are discussed.

Fermionized photons in an array of driven dissipative nonlinear cavities

GERACE, DARIO;
2009-01-01

Abstract

In this work we have theoretically investigated the optical response of a one-dimensional array of strongly nonlinear optical microcavities. When the optical nonlinearity is much larger than both losses and intercavity tunnel coupling, the nonequilibrium steady state of the system is reminiscent of what is known as a strongly correlated Tonks-Girardeau gas of impenetrable bosons. Signatures of strong correlations are identified in the transmission spectrum of the system, as well as in the intensity correlations of the transmitted light. Possible experimental implementations in state-of-the-art solid-state devices are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/146861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 221
  • ???jsp.display-item.citation.isi??? 217
social impact