With the evolution of CAD/CAM technology, custom titanium and/or zirconia abutments are increasingly being used, leading to several comparisons in the literature, both mechanical and aesthetic, to evaluate performance differences between these two types of abutments. Therefore, the aim of this comprehensive review is to present the most recent data on the latest comparisons between CAD/CAM and stock abutment applications. The PICO model was used to perform this review, through a literature search of the PubMed (MEDLINE) and Scopus electronic databases. CAD/CAM abutments allow individualization of abutment parameters with respect to soft tissue, allow increased fracture toughness, predict the failure mode, show no change in the fracture toughness over time, reduce the prosthetic steps, and reduce the functional implant prosthesis score and pain perceived by patients in the early stages. The advantages associated with the use of stock abutments mainly concern the risk of corrosion, time spent, cost, and fit, evaluated in vitro, in the implant–abutment connection. Equal conditions are present regarding the mechanical characteristics during dynamic cycles, screw loss, radiographic fit, and degree of micromotion. Further randomized controlled clinical trials should be conducted to evaluate the advantages reported to date, following in vitro studies about titanium and/or zirconia stock abutments.

CAD/CAM Abutments versus Stock Abutments: An Update Review

Gallo S.;Pascadopoli M.;Pellegrini M.
;
Scribante A.
2022-01-01

Abstract

With the evolution of CAD/CAM technology, custom titanium and/or zirconia abutments are increasingly being used, leading to several comparisons in the literature, both mechanical and aesthetic, to evaluate performance differences between these two types of abutments. Therefore, the aim of this comprehensive review is to present the most recent data on the latest comparisons between CAD/CAM and stock abutment applications. The PICO model was used to perform this review, through a literature search of the PubMed (MEDLINE) and Scopus electronic databases. CAD/CAM abutments allow individualization of abutment parameters with respect to soft tissue, allow increased fracture toughness, predict the failure mode, show no change in the fracture toughness over time, reduce the prosthetic steps, and reduce the functional implant prosthesis score and pain perceived by patients in the early stages. The advantages associated with the use of stock abutments mainly concern the risk of corrosion, time spent, cost, and fit, evaluated in vitro, in the implant–abutment connection. Equal conditions are present regarding the mechanical characteristics during dynamic cycles, screw loss, radiographic fit, and degree of micromotion. Further randomized controlled clinical trials should be conducted to evaluate the advantages reported to date, following in vitro studies about titanium and/or zirconia stock abutments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1468923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact